Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Civil Engineering / 土木工程學系
  4. Development of a high-fidelity failure prediction system for reinforced concrete bridge columns using generative adversarial networks
 
  • Details

Development of a high-fidelity failure prediction system for reinforced concrete bridge columns using generative adversarial networks

Journal
Engineering Structures
Journal Volume
286
Date Issued
2023-07-01
Author(s)
Wu, Ting Yan
RIH-TENG WU  
Wang, Ping Hsiung
Lin, Tzu Kang
KUO-CHUN CHANG
DOI
10.1016/j.engstruct.2023.116130
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/631328
URL
https://api.elsevier.com/content/abstract/scopus_id/85152933984
Abstract
Visual damage patterns of structural components are critical to evaluate structural performance. However, visual damage images can only be obtained by laboratory tests or in-situ tests, which require massive funding and human workforces. In this study, a novel bridge column failure prediction framework is proposed based on generative adversarial network (GAN). Trained with merely 110 damage patterns collected from experimental cyclic loading test, the proposed approach predicts the high-fidelity surface damage patterns of concrete bridge columns given the information of the column design parameters as well as the user-desirable performance level, i.e., Damage Index (DI) of the column. Two network architectures and three label encoding strategies are explored to investigate the performance in estimating the damage pattern. By incorporating DI as a numerical label, the proposed network is able to predict the unseen damage patterns which are not available in the training dataset. Also, it is found that adding classifiers and regressors in the discriminator to account for the condition vector is beneficial for network training, achieving a Frechet Inception Distance (FID) of 102.6 when producing the synthetic patterns. Extensive experiments have demonstrated that the proposed framework is capable of synthesizing decent damage patterns with superior fidelity, providing bridge engineers with a platform to evaluate the potential failure modes during seismic design and evaluation.
Subjects
Conditional image generation | Damage pattern prediction | Deep learning | Generative adversarial network | Performance-based design
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science