Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. Clinical Medicine / 臨床醫學研究所
  4. Short-term correlation properties of R-R interval dynamics at different anesthesia methods
 
  • Details

Short-term correlation properties of R-R interval dynamics at different anesthesia methods

Date Issued
2010
Date
2010
Author(s)
Lan, Jheng-Yan
URI
http://ntur.lib.ntu.edu.tw//handle/246246/253511
Abstract
Key words: Heart rate variability, spinal anesthesia, general anesthesia, detrended fluctuation analysis, sample entropy, linear analysis Background Time and frequency domain analyses of heart rate variability (HRV) are the most commonly used noninvasive methods to evaluate autonomic regulation of heart rate in healthy subjects as well as in patients with cardiovascular disorders. Because nonlinear phenomena are involved in the genesis of human heart rate fluctuations, new analysis techniques have been developed to probe features in heart rate behavior that are not detectable by traditional analysis methods. Analysis of fractal scaling exponents by detrended fluctuation analysis (DFA) is one such method that describes the fractal-like correlation properties of R-R interval data. Sample entropy (SampEn) is another nonlinear method that quantifies the amount of complexity in the time-series data. Breakdown of short-term fractal-like behaviour of heart rate indicates an increased risk for adverse cardiovascular events and mortality, but the pathophysiological background for altered fractal heart rate dynamics is not known. Despite a large body of data concerning the changes in spectral characteristics of HRV during anesthesia, there is little information on the effects of theses physiological interventions on non-linear characteristics of heart rate behavior. This study was designed to assess the changes in the nonlinear features of HRV caused by the spinal anesthesia and general anesthesia. The main purpose was to gain insight into the physiological background for fractal and complexity characteristics of heart rate dynamics. Short-term fractal scaling exponent (α1)along with spectral components of HRV were analyzed during the following anesthesia interventions in patients : (1) spinal anesthesia group : 1)normal dose (Group HM, n=19), 2)low dose (Group LM, n=20), 3) low dose combine fentanyl (Group LMf, n=20); (2) general anesthesia group: 1)total intravenous propofol infusion (Group P, n=15),2) inhalation induction with desflurane (Group D, n=18) Method After institutional ethical approval and getting informed consent, we recorded the electrocardiogram of 100 ASA class I (American Society of Anesthesiologist physical status class I) patients proposed to receive elective surgery. Patients were excluded if they suffered from severe ischemic heart disease, congestive heart failure, diabetes mellitus, or other disorders known to affect autonomic function. None of the patient was taking medications that affect cardiovascular function. Each patient fasted at least 8h prior to testing. Vigorous exercise, alcohol and coffee were also forbidden for 48 h before the operation. On arrival to the operating room, the patients lay in a supine position in a quiet room at least 5 min prior to data collection. In Group HM and LM, 12mg and 6mg of 0.5% hyperbaric bupivacain were injected respectively. In Group LMf, 6mg of 0.5% hyperbaric bupivacaine was supplemented with 20μg of intrathecal fentanyl. All patients received 100% oxygen via face mask for 2 to 3 min prior to induction of general anesthesia. In Group P, patients received propofol infusion at a rate of 300ug/kg/min . In Group D, anesthesia was induced with 3-6-9-12% desflurane increasing gradually in 2L/min O2 and 2L/min N20. Arterial oxygen saturation (SpO2) and end-tidal carbon dioxide (ETCO2) were monitored, and normoventilation was maintained with gentle IPPV via mask if required. Depth of anesthesia was monitor by AAI (A-Line ARX Index) continuously until the value reached 35. Therefore, the HRV measurements were performed at AAI values of 60 to 35 and less than 35. The electrocardiogram data was transferred into the hard disk in a personal computer and offline analysis was performed. Results Short-term fractal scaling exponent (α1) decreased during spinal anesthesia in three groups ( Group HM:from 1.24±0.15 to 0.78±0.11;Group LM:from 1.32±0.25 to 0.98±0.21;Group LMf:from 1.28±0.17 to 0.8±0.21,P<0.0001).α1 increased during both general anesthesia group at AAI value of 60 to 35. Thenα1 decreased during the AAI value less than 35 (Group P: from 1.14±0.2 to 0.94±0.35,P<0.05; Group D:from 1.1±0.26 to 0.7±0.31,P<0.0001). Conventional HRV indices did not show the dynamic changes in Group P.Group HM, LM, LMf and Group D decreased the normalized low frequency spectral power and LF/HF ratio and increased normalized high frequency spectral power (p<0.05). SampEn value decreased in Group LM, LMf and Group D. In addition, the receiver operating characteristic (ROC) was used to estimate the sensitivity and specificity of classification of subjects in awake and after anesthesia states using different parameters. The results show that the DFAα1 is a better indicator for distinguishing baseline from anesthesia state. Conclusion Spinal and deep general anesthesia result the breakdown of short-term fractal-like behaviour of heart rate. Incremental depth of anesthesia until AAI less than 35 results in bidirectional changes in correlation properties of R-R interval dynamics. The results suggest that decrease sympathetic outflow at the same time activation of vagal outflow explains the breakdown of fractal-like behaviour of human heart rate dynamics. Change in α1 can be detected also in light anesthesia levels, when the conventional measures of HRV can not be applied. In addition, α1 is a better indicator for distinguishing baseline from spinal anesthesia state.
Subjects
Heart rate variability
spinal anesthesia
general anesthesia
detrended fluctuation analysis
sample entropy
linear analysis
SDGs

[SDGs]SDG3

Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-99-P97421009-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):337b0b8a9434a46c6115ca86464c743c

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science