Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Materials Science and Engineering / 材料科學與工程學系
  4. Study of self-assembly technology for 3D integration applications
 
  • Details

Study of self-assembly technology for 3D integration applications

Journal
2015 10th International Microsystems, Packaging, Assembly and Circuits Technology Conference, IMPACT 2015 - Proceedings
Pages
237-240
ISBN
9.78147E+12
Date Issued
2015
Author(s)
Chang H.-C.; Fan C.-H.; Chou Y.-C.; Chen K.-N.
YI-CHIA CHOU  
DOI
10.1109/IMPACT.2015.7365201
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964292905&doi=10.1109%2fIMPACT.2015.7365201&partnerID=40&md5=4558add90e41c6aa325dccdfc370eda1
https://scholars.lib.ntu.edu.tw/handle/123456789/614669
Abstract
In this paper, the self-assembly technology is investigated in order to apply on the alignment method to achieve rapid and accurate multichip-to-wafer stacking. By virtue of distinct liquid surface tensions between hydrophilic and hydrophobic materials, the hydrophilic chips can be self-aligned to the hydrophilic substrate which is defined by the surrounding hydrophobic substrate. The surface quality of hydrophobic film with self-assembled monolayers (SAMs) based on self-assembled mechanism strongly affects the performance of alignment. The surface quality of SAMs film which depends on experimental parameters such as dip-coating time and heating time is critical to determine the accuracy of alignment. Moreover, the chip shape and size also have an impact on the alignment accuracy. By improving the misalignment, a good design by the self-assembled mechanism for the self-alignment method can be applied in the bonding technology. © 2015 IEEE.
Subjects
Alignment; Chip scale packages; Hydrophilicity; Hydrophobicity; Microsystems; Reconfigurable hardware; Self assembly; Surface properties; Three dimensional integrated circuits; Alignment accuracy; Chip shape and size; Experimental parameters; Hydrophilic and hydrophobic; Hydrophilic substrate; Hydrophobic substrate; Liquid surface tension; Self-assembly technology; Self assembled monolayers
Publisher
Institute of Electrical and Electronics Engineers Inc.
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science