Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Environmental Engineering / 環境工程學研究所
  4. Modeling Performance and Assessing Mechanisms NOMs Removal by Ozonation Coupled with Biological Activated Carbon Processes
 
  • Details

Modeling Performance and Assessing Mechanisms NOMs Removal by Ozonation Coupled with Biological Activated Carbon Processes

Date Issued
2006
Date
2006
Author(s)
Liang, Chung-Huei
DOI
en-US
URI
http://ntur.lib.ntu.edu.tw//handle/246246/62649
Abstract
This research was focused on developing a non-steady-state numerical model to differentiate the adsorption and biodegradation quantities of a biological activated carbon (BAC) column. The mechanisms considered in this model included adsorption, biodegradation, convection and diffusion. The performance of adsorption and biodegradation on the BAC column was studied using continuous columns tests. Simulations were performed to evaluate the effects of some parameters such as packing media size and superficial velocity on adsorption and biodegradation performances for the removal of dissolved organic matter from water. The experimental results show that before breakthrough, adsorption should be the prevailing mechanism for removal the p-hydroxybenzoic acid, and biodegradation should be responsible for reducing the ozonation intermediates. EBCT could influence the performance of both adsorption and biodegradation in extent. Increasing EBCTs could make the equilibrium more complete for adsorption, thereby improving the performance. The ratio of adsorption to biodegradation on the BAC column increased as EBCT increased, and this implied that adsorption was dominant in an equilibrium condition. Also, the bioactivity approach of BAC can not only reveal the importance of biodegradation mechanisms for the intermediates of ozonation, but also quantify the extent of the adsorption or biodegradation reaction occurring on BAC. This model achieves a good approximation of the experimental data by adjusting the liquid-film mass transfer coefficients. Liquid-film mass transfer coefficient has a certain correlation to the Stanton number. The Freundlich isotherm exponential term and the maximum specific substrate utilization rate from Monod kinetics and the diffusion coefficient are the most sensitive variables, which provides important information to control the performance of the BAC. Decreasing particle size can improve the overall removal efficiency, especially for adsorption rather than biodegradation. Meanwhile, a lower Damköhler number permits more substrate passes the biofilm to the adsorbent and makes the adsorption ratio increase.
Subjects
吸附
生物降解
生物活性碳
粒狀活性碳
數值模式
Adsorption
Biodegradation
Biological activated carbon (BAC)
Granular activated carbon (GAC)
Numerical model
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-95-D86541002-1.pdf

Size

23.53 KB

Format

Adobe PDF

Checksum

(MD5):cfef77bda601f50cc64a31a022e0f194

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science