Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. A hybrid artificial neural network-differential dynamic programming approach for short-term hydro scheduling
 
  • Details

A hybrid artificial neural network-differential dynamic programming approach for short-term hydro scheduling

Journal
Electric Power Systems Research
Journal Volume
33
Journal Issue
2
Pages
77-86
Date Issued
1995
Author(s)
Liang, R.-H.
YUAN-YIH HSU  
DOI
10.1016/0378-7796(95)00929-C
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/500766
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029301913&doi=10.1016%2f0378-7796%2895%2900929-C&partnerID=40&md5=470d61a61eaccc1a9f3bced5b72a151c
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029301913&doi=10.1016%2f0378-7796%2895%2900929-C&partnerID=40&md5=470d61a61eaccc1a9f3bced5b72a151c
Abstract
In this paper, a hybrid artificial neural network-differential dynamic programming (ANN-DDP) method for the scheduling of short-term hydro generation is developed. The purpose of short-term hydro scheduling is to find the optimal amounts of generated powers for the hydro units in the system for the next N (N= 24 in this work) hours in the future. In the proposed method, the DDP procedures are performed offline on historical load data. The results are compiled and valuable information is obtained by using ANN algorithms. The DDP algorithm is then performed online according to the obtained information to give the hydro generation schedule for the forecasted load. Two types of ANN algorithm, the supervised learning neural network by Rumelhart et al. and the unsupervised learning neural network by Kohonen, are employed and compared in this paper. The effectiveness of the proposed approach is demonstrated by the short-term hydro scheduling of Taiwan power system which consists of ten hydro plants. It is concluded from the results that the proposed approach can significantly reduce the execution time of the conventional differential dynamic programming algorithm which is required to reach proper hydro generation schedules. © 1995.
Subjects
Differential dynamic programming; Hydro scheduling; Neural networks
Other Subjects
Algorithms; Constraint theory; Dynamic programming; Electric loads; Neural networks; Optimization; Differential dynamic programming method; Hybrid artificial neural networks; Hydro scheduling; Learning neural networks; Off line analysis; Electric power systems
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science