Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Dentistry / 牙醫專業學院
  4. Oral Biology / 口腔生物科學研究所
  5. Brain-Derived Neurotrophic Factor Antisense Oligonucleotide Impairs Memory Retention and Inhibits Long-Term Potentiation in Rats
 
  • Details

Brain-Derived Neurotrophic Factor Antisense Oligonucleotide Impairs Memory Retention and Inhibits Long-Term Potentiation in Rats

Resource
NEUROSCIENCE v.82 n.4 pp.957-967
Journal
NEUROSCIENCE
Journal Volume
v.82
Journal Issue
n.4
Pages
957-967
Date Issued
2000
Date
2000
Author(s)
Ma, Y.L
Wang, H.L
Wu, H.C
Wei, C.L
Lee, E.H.Y
URI
http://ntur.lib.ntu.edu.tw//handle/246246/94754
Abstract
We have examined the relationship between brain-derived neurotrophic factor gene expression in the hippocampus and memory retention as well as long-term potentiation of rats. One-way inhibitory avoidance learning was adopted as the behavioural paradigm. Results revealed that brain-derived neurotrophic factor messenger RNA levels in the dentate gyrus of the hippocampus were markedly increased at 1 h, 3 h and 6 h post-training in rats showing good retention performance when compared with the poor retention controls. Direct injection of brain-derived neurotrophic factor antisense oligonucleotide into the dentate gyrus of the hippocampus before memory consolidation takes place markedly impaired retention performance in rats. It also significantly decreased brain-derived neurotrophic factor messenger RNA level in the dentate gyrus. The same antisense treatment also markedly reduced the amplitude and slope of excitatory postsynaptic potential as well as the brain- derived neurotrophic factor messenger RNA level in the dentate gyrus. These results suggest that hippocampal brain- derived neurotrophic factor gene expression plays an important role in the memory consolidation process and in the expression of long-term potentiation in rats. These results provide the first evidence to relate brain-derived neurotrophic factor gene expression and memory function in vertebrates. It further suggests that brain-derived neurotrophic factor gene expression is involved in behavioural plasticity.
Subjects
brain-derived neurotrophic factor
gene expression
memory retention
long-term potentiation
hippocampus

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science