Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Applied Mathematical Sciences / 應用數學科學研究所
  4. Geometric Deep Learning for Unsupervised Registration of Diffusion Magnetic Resonance Images
 
  • Details

Geometric Deep Learning for Unsupervised Registration of Diffusion Magnetic Resonance Images

Journal
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Journal Volume
13939 LNCS
ISBN
9783031340475
Date Issued
2023-01-01
Author(s)
Bouza, Jose J.
Yang, Chun Hao  
Vemuri, Baba C.
DOI
10.1007/978-3-031-34048-2_43
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/634460
URL
https://api.elsevier.com/content/abstract/scopus_id/85164008000
Abstract
Deep learning based models for registration predict a transformation directly from moving and fixed image appearances. These models have revolutionized the field of medical image registration, achieving accuracy on-par with classical registration methods at a fraction of the computation time. Unfortunately, most deep learning based registration methods have focused on scalar imaging modalities such as T1/T2 MRI and CT, with less attention given to more complex modalities such as diffusion MRI. In this paper, to the best of our knowledge, we present the first end-to-end geometric deep learning based model for the non-rigid registration of fiber orientation distribution fields (fODF) derived from diffusion MRI (dMRI). Our method can be trained in a fully-unsupervised fashion using only input fODF image pairs, i.e. without ground truth deformation fields. Our model introduces several novel differentiable layers for local Jacobian estimation and reorientation that can be seamlessly integrated into the recently introduced manifold-valued convolutional network in literature. The results of this work are accurate deformable registration algorithms for dMRI data that can execute in the order of seconds, as opposed to dozens of minutes to hours consumed by their classical counterparts.
Subjects
Diffusion MRI | Geometric Deep Learning | Registration
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science