Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Biomedical Engineering / 醫學工程學系
  4. The Alteration of Cell Shape on Chitosan/polycaprolactone Blends: Modulation of Gene Expression and Cell Differentiation
 
  • Details

The Alteration of Cell Shape on Chitosan/polycaprolactone Blends: Modulation of Gene Expression and Cell Differentiation

Date Issued
2010
Date
2010
Author(s)
Shao, Hung-Jen
URI
http://ntur.lib.ntu.edu.tw//handle/246246/254832
Abstract
The purpose of this study was to search for a suitable material for the tissue engineering of anterior cruciate ligaments (ACLs) through studying the cell behaviors of ACL cells on materials. Two biodegradable material, chitosan and polycaprolactone (PCL), were included in the first part. We not only evaluated the biocompatibility of ACL cells on these materials but also the potentiality of ACL cells synthesized extracellular matrix (ECM) on these materials. The results indicated ACL cells on chitosan expressed higher level of transforming growth factor β (TGF β) and collagen type III gene than that of ACL cells did on PCL. However, ACL cells presented round cells shape and did not proliferate well on chitosan. In order to overcome this drawback, in the second part, we introduced PCL into chitosan to create chitosan/PCL blended materials and we expected PCL could promote cells to adhere on the materials. The results showed the number of cells adhering on the blended material increased as the PCL content increased in the blends and the behaviors of gene expression of ACL cells were closely related to the cell shape. Therefore, we found using blended materials could make cells be a beneficial shape for proliferating and synthesizing ECM. In the third part, the chitosan/PCL blends were applied to the different cell types. In the study of human bone marrow mesenchymal stem cells (hBMSCs), the results revealed chitosan/PCL blends could induce hBMSCs into chondrogenesis through the alteration of cell shape. In the study of human keratinocyte cell line (HaCaT) and human fibroblast cell line (Hs68) co-culture system, the results illustrated chitosan/PCL blends affected the cell distribution by controlling cells to present different adherent behaviors on the material. According to our studies, we propose a new concept for the biomaterial selection of tissue engineering. Using blended material could simultaneously control cells toachieve proliferation and phenotypic function.
Subjects
anterior cruciate ligament
cell shape
gene expression
blends
chitosan
polycaprolactone
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-99-D94548007-1.pdf

Size

23.53 KB

Format

Adobe PDF

Checksum

(MD5):d38a4db326b976da3f3f274e73d1f921

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science