Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Node2Grids: A Cost-Efficient Uncoupled Training Framework for Large-Scale Graph Learning
 
  • Details

Node2Grids: A Cost-Efficient Uncoupled Training Framework for Large-Scale Graph Learning

Journal
International Conference on Information and Knowledge Management, Proceedings
Pages
2281-2290
Date Issued
2021
Author(s)
Yang D
Chen C
Zheng Y
Zheng Z
SHIH-WEI LIAO  
DOI
10.1145/3459637.3482456
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119209656&doi=10.1145%2f3459637.3482456&partnerID=40&md5=2622efb4ee6cca17e2b096e472c92bc0
https://scholars.lib.ntu.edu.tw/handle/123456789/607459
Abstract
Graph Convolutional Network (GCN) has been widely used in graph learning tasks. However, GCN-based models (GCNs) are inherently coupled training frameworks repetitively conducting the recursive neighborhood aggregation, which leads to high computational and memory overheads when processing large-scale graphs. To tackle these issues, we present Node2Grids, a cost-efficient uncoupled training framework that leverages the independent mapped data for obtaining the embedding. Instead of directly processing the coupled nodes as GCNs, Node2Grids supports a more efficacious method in practice, mapping the coupled graph data into the independent grid-like data which can be fed into the uncoupled models as Convolutional Neural Network (CNN). This simple but valid strategy significantly saves memory and computational resources while achieving comparable results with the leading GCN-based models. Specifically, in order to support a general and convenient mapping approach, Node2Grids selects the most influential neighborhood with central node fusion information to construct the grid-like data. To further improve the downstream tasks' efficiency, a simple CNN-based neural network is employed to capture the significant information from the mapped grid-like data. Moreover, the grid-level attention mechanism is implemented, which enables implicitly specifying the different weights for the extracted grids of CNN. In addition to the typical transductive and inductive learning tasks, we also verify our framework on million-scale graphs to demonstrate the superiority of cost performance against the state-of-the-art GCN-based approaches. The codes are available on the GitHub link. ? 2021 ACM.
Subjects
graph convolutional network
large-scale graph learning
uncoupled training
Convolution
Graph neural networks
Learning systems
Mapping
Convolutional networks
Convolutional neural network
Cost-efficient
Graph convolutional network
Grid-like
Large-scale graph learning
Large-scales
Network-based modeling
Training framework
Uncoupled training
Convolutional neural networks
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science