Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Biomechatronics Engineering / 生物機電工程學系
  4. Machine Learning-Based Online Multi-Fault Diagnosis for IMs Using Optimization Techniques With Stator Electrical and Vibration Data
 
  • Details

Machine Learning-Based Online Multi-Fault Diagnosis for IMs Using Optimization Techniques With Stator Electrical and Vibration Data

Journal
IEEE Transactions on Energy Conversion
Journal Volume
38
Journal Issue
4
Start Page
2412
End Page
2424
ISSN
0885-8969
1558-0059
Date Issued
2024-12
Author(s)
Shih-Hsien Hsu  
Chien-Hsing Lee
Wen-Fang Wu  
Joe-Air Jiang  
DOI
10.1109/TEC.2024.3405897
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/735079
Abstract
Induction motors (IMs) have been commonly applied to industrial fields since the past decades; thus, developing advanced fault diagnosis methods becomes vital for IM applications. This study proposed an online fault diagnosis system for IMs based on the Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) algorithms to reduce the additional repair costs and prevent unexpected downtime. It focused on detecting healthy three-phase IMs and five common fault conditions of the IMs, involving broken rotor bars, rotor unbalance, and composite faults with short-circuited stator windings that combined two or three types of the faults, for practical purposes. The experimental results show that the model performance improved by 15% over the default model when train-test split ratios, feature selection, and hyperparameter optimization, notably in XGBoost, are considered. The proposed XGBoost model enables a high accuracy of 96.06% for RF to perform a motor fault diagnosis under six different motor conditions. Furthermore, the execution time required by the proposed fault diagnosis system is 57% less than the time required by existing motor fault diagnosis methods. These results successfully demonstrate the effectiveness of the methods proposed in this study for online motor diagnosis.
Subjects
Extreme gradient boosting algorithm
machine learning
motor failure diagnosis
random forest algorithm
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science