Repository logo
  • English
  • 中文
Log In
  1. Home
 
  • Details

Distinct effects of ionizing radiation on in vivo murine kidney and brain normal tissue gene expression

Journal
Clinical Cancer Research
Date Issued
2006-06
Author(s)
ERIC YAO-YU CHUANG 
DOI
10.1158/1078-0432.CCR-05-2418
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33745725766&doi=10.1158%2f1078-0432.CCR-05-2418&partnerID=40&md5=144a57d5fe75fd6b8af78012b14fc03c
Abstract
Purpose: There is a growing awareness that radiation-induced normal tissue injury in late-responding organs, such as the brain, kidney, and lung, involves complex and dynamic responses between multiple cell types that not only lead to targeted cell death but also acute and chronic alterations in cell function. The specific genes involved in the acute and chronic responses of these late-responding normal tissues remain ill defined; understanding these changes is critical to understanding the mechanism of organ damage. As such, the aim of the present study was to identify candidate genes involved in the development of radiation injury in the murine kidney and brain using microarray analysis. Experimental Design: A multimodality experimental approach combined with a comprehensive expression analysis was done to determine changes in normal murine tissue gene expression at 8 and 24 hours after irradiation. Results: A comparison of the gene expression patterns in normal mouse kidney and brain was strikingly different. This observation was surprising because it has been long assumed that the changes in irradiation-induced gene expression in normal tissues are preprogrammed genetic changes that are not affected by tissue-specific origin. Conclusions: This study shows the potential of microarray analysis to identify gene expression changes in irradiated normal tissue cells and suggests how normal cells respond to the damaging effects of ionizing radiation is complex and markedly different in cells of differing origin. ? 2006 American Association for Cancer Research.
SDGs

[SDGs]SDG3

Other Subjects
animal experiment; animal tissue; article; brain; down regulation; gene expression; in vivo study; ionizing radiation; kidney; male; microarray analysis; mouse; nonhuman; priority journal; radiation injury; upregulation; Animals; Brain; Cell Cycle; Gene Expression Regulation; Integrins; Kidney; Lung; Metabolism; Mice; Protein Folding; Protein Transport; Radiation, Ionizing
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science