Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Civil Engineering / 土木工程學系
  4. Rear-Screen and Kinesthetic Vision 3D Manipulator
 
  • Details

Rear-Screen and Kinesthetic Vision 3D Manipulator

Date Issued
2015
Date
2015
Author(s)
Yang, Chao-Chung
URI
http://ntur.lib.ntu.edu.tw//handle/246246/278228
Abstract
The effective 3D manipulation, comprehension, and control of 3D objects on computers are well-established lasting problems, which include a display aspect, a control aspect, and a space coupling between control input and visual output aspect, which is a debatable issue. Most existing control interfaces are located in front of the display. This requires users to imagine that manipulated objects that are actually behind the display exist in front of the display. In this research, the Rear-Screen and Kinesthetic Vision 3D Manipulator is proposed for manipulating models on laptops. In contrast to the front-screen setup of a motion controller, it tracks a user’s hand motion behind screens, coupling the actual interactive space with the perceived visual space. In addition, Kinesthetic Vision provides a dynamic perspective of objects according to a user’s sight, by tracking the position of their head, in order to obtain depth perception using the “motion parallax” effect. To evaluate the performance of “rear-screen interaction” and Kinesthetic Vision, an experiment was conducted to compare the front-screen setup, the rear-screen setup with Kinesthetic Vision, and the rear-screen setup without it. Subjects were asked to grasp and move a cube from a fixed starting location to a target location in each trial. There were 20 designated target locations scattered in the interactive space. The moving time and distance were recorded during experiments. In each setup, subjects were asked to go through 5 trial blocks, including 20 trials in each block. The results show that there are significant differences in the moving efficiency by repeated measures ANOVA. The Rear-Screen and Kinesthetic Vision setup gives rise to better performance, especially in the depth direction of movements, where path length is reduced by 24%.
Subjects
3D manipulator
Virtual reality
VR
Rear-screen
Kinesthetic vision
Eye-hand coordination
Hand-eye coordination
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-104-R01521604-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):6bb73a8e314fdcf22292202e3cd3a77b

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science