Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. National Taiwan University Hospital / 醫學院附設醫院 (臺大醫院)
  4. Differential Capillary and Large Vessel Analysis Improves OCTA Classification of Diabetic Retinopathy.
 
  • Details

Differential Capillary and Large Vessel Analysis Improves OCTA Classification of Diabetic Retinopathy.

Journal
Investigative ophthalmology & visual science
Journal Volume
65
Journal Issue
10
ISSN
1552-5783
Date Issued
2024-08-01
Author(s)
Abtahi, Mansour
Le, David
Ebrahimi, Behrouz
Dadzie, Albert K
Rahimi, Mojtaba
YI-TING HSIEH  
Heiferman, Michael J
Lim, Jennifer I
Yao, Xincheng
DOI
10.1167/iovs.65.10.20
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/723698
Abstract
This study aimed to investigate the impact of distinctive capillary-large vessel (CLV) analysis in optical coherence tomography angiography (OCTA) on the classification performance of diabetic retinopathy (DR). This multicenter study analyzed 212 OCTA images from 146 patients, including 28 controls, 36 diabetic patients without DR (NoDR), 31 with mild non-proliferative DR (NPDR), 28 with moderate NPDR, and 23 with severe NPDR. Quantitative features were derived from the whole image as well as the parafovea and perifovea regions. A support vector machine classifier was employed for DR classification. The accuracy and area under the receiver operating characteristic curve were used to evaluate the classification performance, utilizing features derived from the whole image and specific regions, both before and after CLV analysis. Differential CLV analysis significantly improved OCTA classification of DR. In binary classifications, accuracy improved by 11.81%, rising from 77.45% to 89.26%, when utilizing whole image features. For multiclass classifications, accuracy increased by 7.55%, from 78.68% to 86.23%. Incorporating features from the whole image, parafovea, and perifovea further improved binary classification accuracy from 83.07% to 93.80%, and multiclass accuracy from 82.64% to 87.92%. This study demonstrated that feature changes in capillaries are more sensitive during DR progression, and CLV analysis can significantly improve DR classification performance by extracting features that are specific to large vessels and capillaries in OCTA. Incorporating regional features further improves DR classification accuracy. Differential CLV analysis promises better disease screening, diagnosis, and treatment outcome assessment.
SDGs

[SDGs]SDG3

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science