Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Civil Engineering / 土木工程學系
  4. Neural Networks for Spatial and Temporal Data Classification ─ A Case Study for Landslide Susceptibility Analysis
 
  • Details

Neural Networks for Spatial and Temporal Data Classification ─ A Case Study for Landslide Susceptibility Analysis

Date Issued
2016
Date
2016
Author(s)
Chang, Shih-Kuang
DOI
10.6342/NTU201603263
URI
http://ntur.lib.ntu.edu.tw//handle/246246/278038
Abstract
The amount of data and factor of typhoon hazard is big. There are many high mountains and short rivers in Taiwan, so it is easy to landslide and collapse when typhoons occur. A prediction model for finding the landslide susceptibility area can reduce the loss of collapse event. Factors causing collapse (ex: rainfall, wind speed, terrain, and geology etc.) have their own spatial and temporal correlation and they are different by each typhoon hazard and region. Therefore, the subject of the research is to establish different landslide susceptibility analysis model with spatial and temporal data in a different basin. In this research, using geographic facet analyzing the landslide data in 2005~2014 solves the problem of integrity in past data and the imbalanced landslide data. Using time delay factor in multiple times data as training data of double layer Elman network and spatial attribute shows the spatial and temporal correlation in data. Find the key factor and draw landslide susceptibility map by the classification model. The result of classification is 96% of the real landslide data is in the high and mid susceptibility region. Neural network for spatial and temporal data classification with geographic facet can increase the accuracy and effective in hazard warning.
Subjects
Spatial Correlation
Temporal Correlation
Neural Network
Landslide Susceptibility Analysis
Geographic Facet
SDGs

[SDGs]SDG15

Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-105-R03521120-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):05974450bacc55530793f814c654534e

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science