Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Beyond the BET Analysis: The Surface Area Prediction of Nanoporous Materials Using a Machine Learning Method
 
  • Details

Beyond the BET Analysis: The Surface Area Prediction of Nanoporous Materials Using a Machine Learning Method

Journal
Journal of Physical Chemistry Letters
Journal Volume
11
Journal Issue
14
Pages
5412-5417
Date Issued
2020
Author(s)
Datar A.
Chung Y.G.
Lin L.-C.
LI-CHIANG LIN  
DOI
10.1021/acs.jpclett.0c01518
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088266400&doi=10.1021%2facs.jpclett.0c01518&partnerID=40&md5=df526192a231a8d36943aeae3b91fd55
https://scholars.lib.ntu.edu.tw/handle/123456789/611462
Abstract
Surface areas of porous materials such as metal-organic frameworks (MOFs) are commonly characterized using the Brunauer-Emmett-Teller (BET) method. However, it has been shown that the BET method does not always provide an accurate surface area estimation, especially for large-surface area MOFs. In this work, we propose, for the first time, a data-driven approach to accurately predict the surface area of MOFs. Machine learning is employed to train models based on adsorption isotherm features of more than 300 diverse structures to predict a benchmark measure of the surface area known as the true monolayer area. We demonstrate that the ML-based methods can predict true monolayer areas significantly better than the BET method, showing great promise for their potential as a more accurate alternative to the BET method in the structural characterization of porous materials. ? 2020 American Chemical Society.
Subjects
Forecasting
Metal-Organic Frameworks
Monolayers
Organometallics
Porous materials
Predictive analytics
BET analysis
Brunauer-Emmett-Teller method
Data-driven approach
Large surface area
Machine learning methods
Metalorganic frameworks (MOFs)
Nano-porous materials
Structural characterization
Machine learning
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science