Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electronics Engineering / 電子工程學研究所
  4. Analyses of Yttrium Oxide and Yttrium–doped Germanium Oxide on Germanium by Oxide MBE
 
  • Details

Analyses of Yttrium Oxide and Yttrium–doped Germanium Oxide on Germanium by Oxide MBE

Date Issued
2016
Date
2016
Author(s)
Shen, Wei-Ting
DOI
10.6342/NTU201602217
URI
http://ntur.lib.ntu.edu.tw//handle/246246/276701
Abstract
In the dissertation, the oxide MBE system was harnessed to synthesize both yttrium oxide(Y_2 O_3)and yttrium – doped germanium oxide(Y - GeO_2)on germanium substrate. Then, the metal – oxide – semiconductor capacitor, MOSCap, devices were fabricated after metal was deposited on the semiconductor – oxide samples by utilizing the e – gun evaporator. The primary purpose was to determine whether the interfacial layer was necessary between Ge substrates and high – k materials as a buffer layer in Ge – based MOSCap devices. Additionally, due to the instable properties of GeO_2, yttrium atoms were doped into GeO_2 to strengthen the chemical bonding and ameliorate the overall performances of MOSCap devices, including higher dielectric constant(k)and lower leakage current density, etc. Using post – metallization annealing, PMA, was beneficial to improve the electrical characteristics in numerous aspects. Both border traps and interface – trap density(D_it)were observed to be lower after going through the process of PMA. The former could be clarified by the reduction of hysteresis and frequency dispersion in C – V measurement, the latter was confirmed by the calculation of high – low – frequency capacitance method. Furthermore, leakage current density of the devices was found to be lower in the PMA condition of 250 ℃. The explanation of the phenomenon was the repair of dangling bonds in oxide by hydrogen atoms in forming gas. In room temperature, the minimum value of interface – trap density of devices was 9.099 × 〖10〗^11 eV^(-1) cm^(-2) by utilizing the high – low – frequency capacitance method. At last, by comparing the interface – trap density of devices fabricated by a series of emission current, we concluded that the interfacial layer was needed between Ge substrates and high – k materials as a buffer layer due to lower D_it, indicating better interface quality than direct contact of Ge substrates and high – k materials.
Subjects
Germanium
Yttrium oxide
Yttrium – doped germanium oxide
Oxide MBE
Metal – oxide – semiconductor capacitance
Interface – trap density
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-105-R03943053-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):d5b810968d8ca0c69b73ad204e82cced

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science