Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Effects of Microstructures and Surface Modifications on the Characteristics of Polymer Field Effect Transistor Type Memory Devices
 
  • Details

Effects of Microstructures and Surface Modifications on the Characteristics of Polymer Field Effect Transistor Type Memory Devices

Date Issued
2012
Date
2012
Author(s)
Lin, Yu-Wei
URI
http://ntur.lib.ntu.edu.tw//handle/246246/252112
Abstract
Polymer transistor type memory devices have recently attracted significant scientific interest for flexible electronic applications due to the advantages such as low cost, solution process and flexibility. The dominant mechanism in transistor type memory is the charges trapping due to polymer electrets, interfacial defects or nano-crystal floating gate. However, the nanofibers based nonvolatile memory devices or flexible memory devices have not been fully explored yet. In this thesis, we explored the following two subjects to address the above issues: (1) nonvolatile field-effect transistor memory based on ES nanofibers. (2) flexible nonvolatile transistor memory devices based on polyimides (PIs) Electrets. Nonnvolatile Field-Effect Transistor Memory Based on Electrospun Nanofibers (chapter 2) : We have demonstrated the memory characteristics of ES nanofibers based on F8T2. The effects of the geometry and diameter of the ES nanofibers on charge transport and charge storage ability were explored. The narrow ES nanofibers showed higher mobility than those with a large diameter, because the improved orientation and crystallinity. The large ES nanofiber exhibited a larger memory window, attributed to the heterogeneities in the amorphous-crystalline interfaces in the F8T2 ES nanofibers. The devices of the ES nanofibers with the smallest diameter showed the highest charge carrier mobility of 9.8×10-3 and on-off ratio of 3.6×103 at Vg = 0 V. From the stability testing of the WRER cycles, the good on/off ratios could be maintained for at least 100 cycles, showing good stability. This study demonstrated that the morphology of ES nanofibers have a significant influence on electrical charge storage ability and their resulted memory characteristics. Flexible Nonvolatile Transistor Memory Devices Based on PIs Electrets (chapter 3) : OFET memory devices were fabricated with 2,5-Bis (4-aminophenylenesulfanyl) selenophene-4,4’- (hexafluoroisopropylidene) diphthalic anhydride (APSP-6FDA) and 2,5-Bis (4-aminophenylenesulfanyl) thiophene-4,4’- (hexafluoroisopropylidene) diphthalic anhydride (APST-6FDA) as the electrets, c-PDMS as the blocking layer and F8T2 as the conducting layer. The wider memory operation window (83V) and higher hole mobility (1.29x10-3 cm2V-1s-1) were observed in APSP-6FDA based devices than those of APST-6FDA based devices attributed to the higher electron density in selenophene than thiophene. Moreover, retention test and WRER test showed a long term stability at least 10000s and durability for repeated operation more than 100 cycles. During the bending test of various curvature radius and repeated bending, the hole mobility could be kept in the same level as that in flat state until r = 3 mm and can maintain at least 3000 bending cycles under the curvature r =13 mm. The threshold voltage shift was also kept in a similar level after 3000 bending cycles and increased considerably when curvature radius was smaller than 3 mm, due to more interface defects after the hard bending. The above results demonstrated the potential applications of the materials for flexible nonvolatile memory devices.
Subjects
electrospun nanofibers
transistor-type memory
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-101-R99524008-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):5a7a8cadfc643f46b5588f2b3c91b607

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science