Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Hybrid context enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social data
 
  • Details

Hybrid context enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social data

Journal
INFORMATION PROCESSING & MANAGEMENT
Journal Volume
57
Journal Issue
1
Date Issued
2020
Author(s)
Kumar, A
Srinivasan, K
WEN-HUANG CHENG  
Zomaya, AY
DOI
10.1016/j.ipm.2019.102141
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/628647
URL
https://api.elsevier.com/content/abstract/scopus_id/85073680749
Abstract
Detecting sentiments in natural language is tricky even for humans, making its automated detection more complicated. This research proffers a hybrid deep learning model for fine-grained sentiment prediction in real-time multimodal data. It reinforces the strengths of deep learning nets in combination to machine learning to deal with two specific semiotic systems, namely the textual (written text) and visual (still images) and their combination within the online content using decision level multimodal fusion. The proposed contextual ConvNet-SVMBoVW model, has four modules, namely, the discretization, text analytics, image analytics, and decision module. The input to the model is multimodal text, m ε {text, image, info-graphic}. The discretization module uses Google Lens to separate the text from the image, which is then processed as discrete entities and sent to the respective text analytics and image analytics modules. Text analytics module determines the sentiment using a hybrid of a convolution neural network (ConvNet) enriched with the contextual semantics of SentiCircle. An aggregation scheme is introduced to compute the hybrid polarity. A support vector machine (SVM) classifier trained using bag-of-visual-words (BoVW) for predicting the visual content sentiment. A Boolean decision module with a logical OR operation is augmented to the architecture which validates and categorizes the output on the basis of five fine-grained sentiment categories (truth values), namely ‘highly positive,’ ‘positive,’ ‘neutral,’ ‘negative’ and ‘highly negative.’ The accuracy achieved by the proposed model is nearly 91% which is an improvement over the accuracy obtained by the text and image modules individually.
Subjects
Multimodal; Sentiment analysis; Deep learning; Context; BoVW; STRENGTH DETECTION; AUDIO
Publisher
ELSEVIER SCI LTD
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science