Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. On Binary Statistical Classification from Mismatched Empirically Observed Statistics
 
  • Details

On Binary Statistical Classification from Mismatched Empirically Observed Statistics

Journal
IEEE International Symposium on Information Theory - Proceedings
Journal Volume
2020-June
Pages
2533-2538
Date Issued
2020
Author(s)
Hsu, H.-W.
I-HSIANG WANG  
DOI
10.1109/ISIT44484.2020.9174520
URI
https://www.scopus.com/inward/record.url?eid=2-s2.0-85090401909&partnerID=40&md5=855ad861d307ec8140cc075a9fbe8693
https://scholars.lib.ntu.edu.tw/handle/123456789/558998
Abstract
In this paper, we analyze the fundamental limit of statistical classification with mismatched empirically observed statistics. Unlike classical hypothesis testing where we have access to the distributions of data, now we only have two training sequences sampled i.i.d. from two unknown distributions P 0 and P 1 respectively. The goal is to classify a testing sequence sampled i.i.d. from one of the two candidate distributions, each of which is deviated slightly from P 0 and P 1 respectively. In other words, there is mismatch between how the training and testing sequences are generated. The amount of mismatch is measured by the norm of the deviation in the Euclidean space. Assuming the norm of deviation is not greater than δ, we derive an asymptotically optimal test in Chernoff's regime, and analyze its error exponents in both Stein's regime and Chernoff's regime. We also give both upper and lower bounds on the decrease of error exponents due to (i) unknown distributions (ii) mismatch in training and testing distributions. When δ is small, we show that the decrease in error exponents is linear in δ and characterize its first-order term. © 2020 IEEE.
Other Subjects
Errors; Asymptotically optimal; Euclidean spaces; Hypothesis testing; Statistical classification; Testing sequences; Training and testing; Training sequences; Upper and lower bounds; Information theory
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science