Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Applied Mechanics / 應用力學研究所
  4. Finite Element Model of a Piezoelectric Energy Harvester Experimental Validation and Numerical Evaluation of Equivalent Parameters
 
  • Details

Finite Element Model of a Piezoelectric Energy Harvester Experimental Validation and Numerical Evaluation of Equivalent Parameters

Date Issued
2016
Date
2016
Author(s)
Yu, Di-Yao
DOI
10.6342/NTU201601184
URI
http://ntur.lib.ntu.edu.tw//handle/246246/277109
Abstract
This thesis discusses some problems in piezoelectric energy harvesting based on certain finite element (FE) models. It consists of two parts. The first part uses the FE simulation for performance evaluation of different methods used for deriving the equivalent parameters of a piezoelectric energy harvesting system. The second part is to perform the experiment for validating the FE model of a rectified piezoelectric energy harvesting system. Specifically, there are three methods for finding the equivalent system parameters. The first one is based on the Hamiltonian energy principle and the Rayleigh-Ritz approximation. While all the parameters can be derived analytically, they can only be evaluated if the material properties of a device are known in advanced. In addition, the modal function used in Rayleigh-Ritz approximation may not be available for the case of irregular geometry of piezoelectric elements. The second one is based on the finite element simulation of a piezoelectric system together with the prescribed equivalent mass and force parameters derived from the energy formulation. This approach shows good accuracy, but it needs some parameters from the energy approach. Finally, the third approach is based on the equivalent circuit model. It shows very good accuracy in various magnitudes of electromechanical couplings. However, only the electric parameters can be revealed from this approach. The second part is to develop an experiment setting for validating the FE model of a rectified piezoelectric energy harvesting system proposed by Prof. Shu’s research group. A piezoelectric cantilevered bimorph is used and the interface circuits include the AC circuit, the standard rectified interface and the parallel synchronized switch harvesting on inductor (P-SSHI) circuit. The experimental results agree quite well with the proposed finite element simulations.
Subjects
Piezoelectric energy harvesting system
Finite element
Standard rectified interface
Parallel synchronized switch harvesting on inductor
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-105-R02543060-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):b075312ac0e85308f9f6480f49010ce3

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science