Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Biomedical Engineering / 醫學工程學系
  4. Computer Assisted Trajectory Planning and Its Surgical Outcome for Posterior Atlantoaxial Transarticular Screw Fixation Surgery
 
  • Details

Computer Assisted Trajectory Planning and Its Surgical Outcome for Posterior Atlantoaxial Transarticular Screw Fixation Surgery

Date Issued
2012
Date
2012
Author(s)
Chen, Ying-Sian
URI
http://ntur.lib.ntu.edu.tw//handle/246246/254725
Abstract
Objective: To evaluate the feasibility of preoperative computer-assisted trajectory planning for posterior atlantoaxial transarticular screw fixation with surgical outcomes. Introduction: Cervical C1-C2 instability or dislocation, usually caused by trauma or rheumatoid arthritis, results in nerve compression and assorted disorders. Most of patients can be cured by reduction treatment with the use of neck collar. The patients who suffer from severe symptoms may need surgical treatment. Posterior atlantoaxial fixation with transarticular screw (TAS) is a common treatment for atlantoaxial joint instability due to good stabilization efficacy. However, high complication rates were reported. Complications resulted from screw malposition and neurovascular deficit are catastrophic and fatal. Therefore, constructing patient’s individual 3D cervical images and planning TAS trajectory with a computer program prior to surgery are suggested to avoid fetal complications. Ideally, the TAS should penetrate four articular surfaces of C1-C2, and the screw tip should reach anterior surface of C1 arch without crashing the nerve and vertebral artery. The feasibility of preoperative planning of screw trajectory depends on whether the intra-surgical screw pathway follows the planned route or not. In addition, the change of C1-C2 relative position after surgery remains unclear. The purpose of this study is in two-fold. The first one is to evaluate the consistency between the virtually-planned and intra-surgical screw trajectory. The second one is to find the correlations between the parameters of screw insertion and the change of C1-C2 relative position after surgery.   Material and Method: Nineteen patients (average age: 61.1 years; range: 35-71 years) in need of posterior atlantoaxial transarticular fixation based on diagnosis of experienced neurosurgeons were recruited. Prior to surgery, all patients underwent computer tomography (CT) scan for screw trajectory planning. A trajectory planning computer program was self-designed to reconstruct a patient’s 3D cervical images with functions of multi-planar section display. The program allowed the evaluation of surface anatomy of cervical spine, which helped surgeons to determine the screw entry point, the horizontal and vertical insertion angle, and the screw size. The patients underwent another CT scan at follow up examination. The following parameters were measured to analyze the deviations between the virtually-planned and intra-surgical screw trajectory: entry point, vertical angle, horizontal angle, and screw length and target point. The pre and post-operative position of C1 and C2 were measured. Result: (a). Surgical outcome. Overall, 32 transarticular screws were inserted. No massive bleeding and major complications were found. (b). Deviation of screw trajectory. The vertical angle of intra-surgical screw insertion was significantly larger than that of virtually-planned one (p<0.05). Other parameters of screw insertion were similar between the virtually-planned and the intra-surgical screw trajectory. (c). Correlation between parameters. Moderate negative correlation was found between vertical entry point and vertical angle (R=0.567, p=0.01), and moderate positive correlation was found between horizontal entry point and horizontal angle (R=0.378, p=0.039). The increase of intraoperative vertical angle decreased the distance between C1 and C2 along X-axis direction but increased the distance along Y-axis direction.   Conclusion: This study indicates that surgeon can learn the individual stereotactic characteristics of patient’s cervical structures during preoperative screw trajectory planning, and thus insert screw more precisely without injuring soft tissue duirng surgery. This study also indicates that higher vertical angle of screw insertion will shorten the distance of C1-C2 after fixation, which may release the pain and the nerve compression resulted from C1-C2 dislocation.
Subjects
Posterior atlantoaxial transarticular screw fixation
computer assisted trajectory planning system
relative position of C1 and C2
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-101-R99548022-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):e9bc658b21080b3a430794a4db31523f

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science