Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Applied Mechanics / 應用力學研究所
  4. A Study on Monitoring Blood Coagulation Reaction by Use of Self-Sensing Piezoresistive Microcantilever and Fast Fourier Transform Analysis System
 
  • Details

A Study on Monitoring Blood Coagulation Reaction by Use of Self-Sensing Piezoresistive Microcantilever and Fast Fourier Transform Analysis System

Date Issued
2015
Date
2015
Author(s)
Lin, Hao-Qin
URI
http://ntur.lib.ntu.edu.tw//handle/246246/277005
Abstract
This study has developed a real-time coagulation monitoring sensor by using an externally vibrated, self-sensing piezoresistive microcantilever for disposable point-of-car coagulation device. With the increasing use of oral anti-coagulant drugs and increasing adverse drug events, the need for point-of-care coagulation devices has become necessary. Prothrombin time (PT) is a measure of the extrinsic pathway of blood coagulation, and it is an index for anticoagulant therapy to determine the blood condition in coagulation reaction. In this study, the measurement was performed by vibrating the piezoresistive microcatilever immersed in the sample liquid at a fixed frequency of 10 Hz and fixed amplitude of 40 μm. The acquired signal of resistance change in microcantilever was processed by Fast Fourier Transform algorithm, and the resistance amplitude in 10 Hz indicated the amount of force exerting to the cantilever. In coagulation reaction, the viscosity of samples was sharply changed due to the clot formation, and the increased force can be sensed when the resistance amplitude in 10 Hz rises. Prothrombin time can be obtained by the time needed for fibrin clot formation. The method was initiated by Sonoclot analysis. The amplitude of resistance in the specific frequency was found in a well linear correlation with kinematic viscosity changes of glycerol/water solutions (R2 > 0.99). It was also found that the amplitude-kinematic viscosity curve behave differently in very low kinematic viscosity, probably due to the decrease in viscous drag of low kinematic viscosity fluids. Also, the Reynolds number correlation can be achieved to present the relation of vibrated microcantilevers in sample liquid. Thus, ∆R/R_0 (ppm)=2〖Re〗^(-0.659)(R2 = 0.985) was derived to successfully describe the relation between acquired signals and vibrated Reynolds number. In addition, three types of commercially standard human plasma samples for measurement of coagulation prothrombin time were used for characterizing microcantilever sensors. The measured results of resistance amplitude in specific frequency with specific patterns of signature indicated the viscoelastic changes in blood coagulation reaction process. In coagulation reaction of human plasma control level 1, the PT measured by the microcantilevers was 12.08 sec with std. of 1.53 sec; PT = 27.08 sec with std. of 1.61 sec in human plasma control level 2; and PT = 38.08 sec with std. of 2.75 sec in human plasma control level 3. Compare with commercial coagulation device, the PT showed an excellent agreement between the microcantilever sensor and commercial device in 95% confident range. All results lay in the PT ranges of references. The experiment results demonstrated that the PT can be measured by vibrated microcantilevers accurately and precisely. Thus, this microcantilever sensor has demonstrated the real-time measurement for point-of-care coagulation monitoring, and shown its potential in miniaturization for personal diagnosis.
Subjects
piezoresistance
microcantilever
prothrombin time
viscosity
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-104-R02543079-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):c31d1f9773482936d10d37c7afcd03cd

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science