Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Biomedical Engineering / 醫學工程學系
  4. Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss
 
  • Details

Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss

Journal
Medical Physics
Journal Volume
46
Journal Issue
8
Pages
3555-3564
Date Issued
2019
Author(s)
Ouyang J.
Chen K.T.
Gong E.
Pauly J.
Zaharchuk G.
TZE-HSIANG CHEN  
DOI
10.1002/mp.13626
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067498993&doi=10.1002%2fmp.13626&partnerID=40&md5=85ed0287896a5b52e184273e8f88750f
https://scholars.lib.ntu.edu.tw/handle/123456789/611663
Abstract
Purpose: Our goal was to use a generative adversarial network (GAN) with feature matching and task-specific perceptual loss to synthesize standard-dose amyloid Positron emission tomography (PET) images of high quality and including accurate pathological features from ultra-low-dose PET images only. Methods: Forty PET datasets from 39 participants were acquired with a simultaneous PET/MRI scanner following injection of 330?±?30?MBq of the amyloid radiotracer 18F-florbetaben. The raw list-mode PET data were reconstructed as the standard-dose ground truth and were randomly undersampled by a factor of 100 to reconstruct 1% low-dose PET scans. A 2D encoder-decoder network was implemented as the generator to synthesize a standard-dose image and a discriminator was used to evaluate them. The two networks contested with each other to achieve high-visual quality PET from the ultra-low-dose PET. Multi-slice inputs were used to reduce noise by providing the network with 2.5D information. Feature matching was applied to reduce hallucinated structures. Task-specific perceptual loss was designed to maintain the correct pathological features. The image quality was evaluated by peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and root mean square error (RMSE) metrics with and without each of these modules. Two expert radiologists were asked to score image quality on a 5-point scale and identified the amyloid status (positive or negative). Results: With only low-dose PET as input, the proposed method significantly outperformed Chen et al.'s method (Chen et al. Radiology. 2018;290:649–656) (which shows the best performance in this task) with the same input (PET-only model) by 1.87?dB in PSNR, 2.04% in SSIM, and 24.75% in RMSE. It also achieved comparable results to Chen et al.'s method which used additional magnetic resonance imaging (MRI) inputs (PET-MR model). Experts' reading results showed that the proposed method could achieve better overall image quality and maintain better pathological features indicating amyloid status than both PET-only and PET-MR models proposed by Chen et al. Conclusion: Standard-dose amyloid PET images can be synthesized from ultra-low-dose images using GAN. Applying adversarial learning, feature matching, and task-specific perceptual loss are essential to ensure image quality and the preservation of pathological features. ? 2019 American Association of Physicists in Medicine
Subjects
Deep learning
Glycoproteins
Image quality
Mean square error
Positron emission tomography
Quality control
Signal to noise ratio
Adversarial learning
Adversarial networks
Peak signal to noise ratio
PET reconstruction
Positron emission tomography (PET)
Root mean square errors
Structural similarity
Visual qualities
Magnetic resonance imaging
Article
brain cortex
classifier
clinical article
clinical evaluation
clinical feature
diagnostic accuracy
generative adversarial network
human
image quality
image reconstruction
machine learning
mean absolute error
nuclear magnetic resonance imaging
positron emission tomography
radiation dose
radiological parameters
signal noise ratio
statistical analysis
task positive network
time of flight mass spectrometry
article
deep learning
human experiment
low drug dose
radiologist
SDGs

[SDGs]SDG3

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science