Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Transfer Learning for Video Recognition with Scarce Training Data for Deep Convolutional Neural Network
 
  • Details

Transfer Learning for Video Recognition with Scarce Training Data for Deep Convolutional Neural Network

Date Issued
2014-09-15
Author(s)
Yu-Chuan Su
Tzu-Hsuan Chiu
Chun-Yen Yeh
Hsin-Fu Huang
WINSTON HSU  
DOI
http://arxiv.org/abs/1409.4127v2
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/413054
URL
http://arxiv.org/abs/1409.4127v2
Abstract
Unconstrained video recognition and Deep Convolution Network (DCN) are two active topics in computer vision recently. In this work, we apply DCNs as frame-based recognizers for video recognition. Our preliminary studies, however, show that video corpora with complete ground truth are usually not large and diverse enough to learn a robust model. The networks trained directly on the video data set suffer from significant overfitting and have poor recognition rate on the test set. The same lack-of-training-sample problem limits the usage of deep models on a wide range of computer vision problems where obtaining training data are difficult. To overcome the problem, we perform transfer learning from images to videos to utilize the knowledge in the weakly labeled image corpus for video recognition. The image corpus help to learn important visual patterns for natural images, while these patterns are ignored by models trained only on the video corpus. Therefore, the resultant networks have better generalizability and better recognition rate. We show that by means of transfer learning from image to video, we can learn a frame-based recognizer with only 4k videos. Because the image corpus is weakly labeled, the entire learning process requires only 4k annotated instances, which is far less than the million scale image data sets required by previous works. The same approach may be applied to other visual recognition tasks where only scarce training data is available, and it improves the applicability of DCNs in various computer vision problems. Our experiments also reveal the correlation between meta-parameters and the performance of DCNs, given the properties of the target problem and data. These results lead to a heuristic for meta-parameter selection for future researches, which does not rely on the time consuming meta-parameter search.
Subjects
Computer Science - Computer Vision and Pattern Recognition; Computer Science - Computer Vision and Pattern Recognition; Computer Science - Learning
Type
conference paper
File(s)
Loading...
Thumbnail Image
Name

1409.4127.pdf

Size

7.75 MB

Format

Adobe PDF

Checksum

(MD5):0839c716021c968733665bb259924318

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science