Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Applied Mechanics / 應用力學研究所
  4. On the robustness and generalization of thermal error models for CNC machine tools
 
  • Details

On the robustness and generalization of thermal error models for CNC machine tools

Journal
International Journal of Advanced Manufacturing Technology
Journal Volume
130
Journal Issue
3-4
Date Issued
2023-01-01
Author(s)
PO-HAN CHEN  
PEI-ZEN CHANG  
Hu, Yuh Chung
Luo, Tzuo Liang
Tsai, Chun Yu
WEI-CHANG LI  
DOI
10.1007/s00170-023-12685-3
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/638233
URL
https://api.elsevier.com/content/abstract/scopus_id/85179333524
Abstract
Thermally induced errors significantly affect the accuracy of the CNC machining process as they account for 40–70% of overall machining errors. The amount of thermal error is a function of the temperatures of the machine tool mixed with that of the environment, posing difficulty to accurately predict the thermal errors. To address this, this work compares prediction models under variations of cutting parameters and environmental temperatures and summarizes the strategy of manipulating the input data to attain a robust estimation of the thermal offset error. In particular, the accuracy of a prediction model can vary under varying ambient temperatures, and therefore, the robustness and generalizability are rather important in evaluating model’s efficacy. Here, four models, namely linear regression (LR), eXtreme gradient boosting (XGBoost), back propagation neural network (BPNN), and gated recurrent unit (GRU), are compared using the variance and average of the root mean square error (RMSE) for three spindle speed profiles. The averaged RMSEs fall into the range between 3.5 and 4.2 μm across all models and among them, the SFS–LR model yields the lowest variance. Finally, the estimated error is then being compensated using the zero-point shift function on the FANUC controller of the machine tool through the VMX platform developed by the Industrial Technology Research Institute (ITRI) in Taiwan. The resultant thermal error based on the SFS–LR model reduces 21.6 to 8.8 μm after compensation.
Subjects
Generalized thermal error models | Machine learning | Robust thermal error models | Thermal error compensation
SDGs

[SDGs]SDG9

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science