Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Hand pose estimation in object-interaction based on deep learning for virtual reality applications
 
  • Details

Hand pose estimation in object-interaction based on deep learning for virtual reality applications

Journal
Journal of Visual Communication and Image Representation
Journal Volume
70
Date Issued
2020
Author(s)
Wu M.-Y
Ting P.-W
Tang Y.-H
Chou E.-T
LI-CHEN FU  
DOI
10.1016/j.jvcir.2020.102802
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085254798&doi=10.1016%2fj.jvcir.2020.102802&partnerID=40&md5=c30c36749cd1629736a1ce1aefd46f9f
https://scholars.lib.ntu.edu.tw/handle/123456789/581395
Abstract
Hand Pose Estimation aims to predict the position of joints on a hand from an image, and it has become popular because of the emergence of VR/AR/MR technology. Nevertheless, an issue surfaces when trying to achieve this goal, since a hand tends to cause self-occlusion or external occlusion easily as it interacts with external objects. As a result, there have been many projects dedicated to this field for a better solution of this problem. This paper develops a system that accurately estimates a hand pose in 3D space using depth images for VR applications. We propose a data-driven approach of training a deep learning model for hand pose estimation with object interaction. In the convolutional neural network (CNN) training procedure, we design a skeleton-difference loss function, which effectively can learn the physical constraints of a hand. Also, we propose an object-manipulating loss function, which considers knowledge of the hand-object interaction, to enhance performance. In the experiments we have conducted for hand pose estimation under different conditions, the results validate the robustness and the performance of our system and show that our method is able to predict the joints more accurately in challenging environmental settings. Such appealing results may be attributed to the consideration of the physical joint relationship as well as object information, which in turn can be applied to future VR/AR/MR systems for more natural experience. ? 2020 Elsevier Inc.
Subjects
Convolutional neural networks; E-learning; Virtual reality; Data-driven approach; Hand pose estimations; Learning models; Object information; Object interactions; Object manipulating; Physical constraints; Training procedures; Deep learning
SDGs

[SDGs]SDG11

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science