Publication:
On the uniform edge-partition of a tree

cris.lastimport.scopus2025-04-19T16:13:52Z
cris.virtual.departmentNetworking and Multimediaen_US
cris.virtual.departmentBiomedical Electronics and Bioinformaticsen_US
cris.virtual.departmentComputer Science and Information Engineeringen_US
cris.virtual.orcid0000-0003-2837-1279en_US
cris.virtualsource.department2fe71129-7653-42a2-8b64-378dd089abfd
cris.virtualsource.department2fe71129-7653-42a2-8b64-378dd089abfd
cris.virtualsource.department2fe71129-7653-42a2-8b64-378dd089abfd
cris.virtualsource.orcid2fe71129-7653-42a2-8b64-378dd089abfd
dc.contributor.authorWu, Bang Yeen
dc.contributor.authorWang, Hung-Lungen
dc.contributor.authorTa Kuan, Shihen
dc.contributor.authorKUN-MAO CHAOen
dc.creatorWu, Bang Ye; Wang, Hung-Lung; Kuan, Shih Ta; Chao, Kun-Maoen
dc.date2007en
dc.date.accessioned2009-04-29T02:59:57Z
dc.date.accessioned2018-07-05T01:39:09Z
dc.date.available2009-04-29T02:59:57Z
dc.date.available2018-07-05T01:39:09Z
dc.date.issued2007
dc.description.abstractWe study the problem of uniformly partitioning the edge set of a tree with n edges into k connected components, where k ≤ n. The objective is to minimize the ratio of the maximum to the minimum number of edges of the subgraphs in the partition. We show that, for any tree and k ≤ 4, there exists a k-split with ratio at most two. For general k, we propose a simple algorithm that finds a k-split with ratio at most three in O (n log k) time. Experimental results on random trees are also shown. © 2006 Elsevier B.V. All rights reserved.
dc.formatapplication/pdfen
dc.format.extent201283 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.doi10.1016/j.dam.2006.10.012
dc.identifier.issn0166218X
dc.identifier.scopus2-s2.0-34247142379
dc.identifier.urihttp://ntur.lib.ntu.edu.tw//handle/246246/154549
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-34247142379&doi=10.1016%2fj.dam.2006.10.012&partnerID=40&md5=ef7247b1214c107531c9ae272b4456f1
dc.identifier.uri.fulltexthttp://ntur.lib.ntu.edu.tw/bitstream/246246/154549/1/14.pdf
dc.languageenen
dc.language.isoen_US
dc.relationDiscrete Applied Mathematics 155 (10): 1213-1223en
dc.relation.ispartofDiscrete Applied Mathematics
dc.relation.journalissue10
dc.relation.journalvolume155
dc.relation.pages1213-1223
dc.subjectAlgorithm; Optimization problem; Partition; Tree
dc.titleOn the uniform edge-partition of a treeen
dc.typejournal articleen
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
14.pdf
Size:
196.57 KB
Format:
Adobe Portable Document Format