Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Effect of alcohol aggregation on the retention factors of chiral solutes with an amylose-based sorbent: Modeling and implications for the adsorption mechanism
 
  • Details

Effect of alcohol aggregation on the retention factors of chiral solutes with an amylose-based sorbent: Modeling and implications for the adsorption mechanism

Journal
Journal of Chromatography A
Journal Volume
1328
Date Issued
2014-02-07
Author(s)
HUNG-WEI TSUI  
Franses, Elias I.
Wang, Nien Hwa Linda
DOI
10.1016/j.chroma.2013.12.078
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/640239
URL
https://api.elsevier.com/content/abstract/scopus_id/84892974713
Abstract
Various displacement models in the literature have been widely used for understanding the adsorption mechanisms of solutes in various chromatography systems. The models were used for describing the often-observed linear plots of the logarithms of the retention factor versus the logarithms of the polar modifier concentration CI0. The slopes of such a plot was inferred to be equal to the number of the displaced modifier molecules upon adsorption of one solute molecule, and were generally found to be greater than 1. In this study, the retention factors of four structurally related chiral solutes, ethyl lactate (EL), methyl mandelate (MM), benzoin (B), and pantolactone (PL), were measured for the amylose tris[(S)-α-methylbenzylcarbamate] sorbent, or AS, as a function of the concentration of isopropanol (IPA) in n-hexane. With increasing IPA concentration CI0, the slopes increase from less than 1, at a concentration range from 0.13 to 1.3M, to slightly more than 1 at higher concentrations. Such slopes cannot be explained by the conventional retention models. It was found previously for monovalent solutes that such slopes can only be explained when the aggregation of the mobile phase modifier, isopropyl alcohol, was accounted for. A new retention model is presented here, accounting for alcohol aggregation, multivalent solute adsorption, multivalent solute-alcohol complexation, alcohol adsorption, and solute intra hydrogen-bonding, which occur in these four solutes. The slope is found to be controlled by three key dimensionless groups, the fraction of the sorbent binding sites covered by IPA, the fraction of the solute molecules in complex form, and the fraction of the IPA molecules in aggregate form. The limiting slope at a very high IPA concentration is equal to the value of (x+y)/n, where x is the number of the solute-sorbent binding sites and y is the number of the alcohol molecules in the solute-alcohol complex, and n is the alcohol aggregation number. The model was tested with the HPLC data of two sets of chiral solutes, one set of new data presented here and of one set of literature data by Gyimesi-Forrás et al. (2009), for which there is no known intramolecular H-bonding. For the first set of solutes, the values of the equilibrium constants for intramolecular hydrogen bonding were calculated from our previous IR data. The value of the parameter y was fixed on the basis of the number of the solute functional groups, IR data, and the results of DFT and MD simulations. The retention factors in pure hexane (k0) were found experimentally for EL, MM, and B; for PL they were estimated from the data. Then the values of x and the complexation equilibrium constants were estimated. The model fits fairly well our new data, and less well the more-limited literature data, for which the k0 values were unavailable, and the retention factors were obtained over a narrow range of IPA concentrations. For EL and PL, results of infrared spectroscopy, density functional theory, and molecular dynamics simulations indicated strong solute-IPA complexation, and multiple solute-sorbent binding sites, which are consistent with the fitting results. Hence, the new model has been shown to be more reliable than the previous models for estimating the numbers of the potential binding sites of multivalent solutes. © 2014.
Subjects
Alcohol aggregation | Chiral molecules | Chromatography | Retention model
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science