Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Chemistry / 化學系
  4. Adapting Atomic Configuration Steers Dynamic Half-Occupied State for Efficient CO2 Electroreduction to CO
 
  • Details

Adapting Atomic Configuration Steers Dynamic Half-Occupied State for Efficient CO2 Electroreduction to CO

Journal
Journal of the American Chemical Society
Journal Volume
147
Journal Issue
15
Start Page
13027
End Page
13038
ISSN
0002-7863
1520-5126
Date Issued
2025-04-01
Author(s)
Jiali Wang
Hui Ying Tan
Chia-Shuo Hsu
You-Chiuan Chu
Ching-Wei Chan
Kuan-Hsu Chen
Xuan-Rou Lin
Yi-Chun Lee
Hsiao-Chien Chen
Hao Ming Chen  
DOI
10.1021/jacs.5c03121
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/729342
Abstract
Electronic structures stand at the center to essentially understand the catalytic performance and reaction mechanism of atomically dispersed transition-metal–nitrogen–carbon catalysts (ADTCs). However, under realistic electrocatalytic conditions, the dynamic electronic disturbance at metal centers originating from complicated interactions with microenvironments is commonly neglected, which makes a true structure–property correlation highly ambiguous. Here, we employ operando time-resolved X-ray absorption spectroscopy to delve deeply into dynamic electronic behaviors of a family of transition-metal centers that are observed to adaptively vary in the metal–ligand configuration during the CO2 electroreduction reaction. We identify dynamic electronic/geometric configuration and d-orbital occupation under working conditions, demonstrating an unprecedentedly precise activity descriptor, i.e., dynamic axial dz2 electron, for the CO2-to-CO conversion. Direct results validate that the half-occupied state suggests the optimum binding behaviors with intermediates, significantly promoting CO production, which has been demonstrated by a significant kinetics enhancement of 1 to 2 orders of magnitude as compared with fully occupied and unoccupied states. This work presents the first empirical demonstration for a real correlation between the dynamic electronic/geometric configuration and catalytic kinetics in ADTCs, paving a new way for modulating catalysts and designing highly efficient reaction pathways.
Publisher
American Chemical Society (ACS)
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science