Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Nanoporous Material Recognition via 3D Convolutional Neural Networks: Prediction of Adsorption Properties
 
  • Details

Nanoporous Material Recognition via 3D Convolutional Neural Networks: Prediction of Adsorption Properties

Journal
Journal of Physical Chemistry Letters
Journal Volume
12
Journal Issue
9
Pages
2279-2285
Date Issued
2021
Author(s)
Cho E.H.
Lin L.-C.
LI-CHIANG LIN  
DOI
10.1021/acs.jpclett.1c00293
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102905960&doi=10.1021%2facs.jpclett.1c00293&partnerID=40&md5=66973eaeec10a098f78fa8ea8fc4ab93
https://scholars.lib.ntu.edu.tw/handle/123456789/611454
Abstract
Nanoporous materials can be effective adsorbents for various energy applications. Because of their abundant number, brute-force-based material discovery can, however, be challenging. Data-driven approaches can be advantageous for such purposes. In this study, we demonstrate for the first time the applicability of a 3D convolutional neural network (CNN) in material recognition for predicting adsorption properties. 2D CNNs have been widely applied to image recognition, where the CNN self-learns important features of images, without the need of handcrafting features that are subject to human bias. This study explores methane adsorption in zeolites as a case study, where ?6500 hypothetical zeolites are utilized to train/validate our designed CNN model. The CNN model offers highly accurate predictions, and the self-learned features resemble the channel and pore-like geometry of structures. This study demonstrates the extension of computer vision to materials science and paves the way for future studies such as carbon capture. ?
Subjects
Adsorption
Convolution
Forecasting
Image recognition
Nanopores
Plasma interactions
Porous materials
Zeolites
Adsorption properties
Data-driven approach
Energy applications
Highly accurate
Important features
Material recognition
Methane adsorption
Nano-porous materials
Convolutional neural networks
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science