Automated monitoring and analyses of honey bee pollen foraging behavior using a deep learning-based imaging system
Journal
Computers and Electronics in Agriculture
Journal Volume
187
Date Issued
2021
Abstract
Pollen foraging efficiency provides vital information for the behavioral research on honey bees. The pollen production of beehives can be measured by manually weighing the pollen collected from pollen traps. For long-term pollen foraging monitoring, this approach is both inefficient and laborious. This study presents an efficient method for automatically monitoring the pollen foraging behavior and environmental conditions through an embedded imaging system. The imaging system uses an off-the-shelf camera installed at the beehive entrance to acquire video streams that are processed using the developed image processing algorithm. A lightweight real-time object detection and deep learning-based classification model, supported by an object tracking algorithm, was trained for counting and recognizing honey bee into pollen or non-pollen bearing class. The F1-score was 0.94 for pollen and non-pollen bearing honey bee recognition, and the precision and recall values were 0.91 and 0.99, respectively. For foraging trip counting algorithm, the mean average percent errors of the pollen bearing honey bee count and the total incoming honey bee count were 8.45 ± 2.72% and 10.55 ± 2.10%, respectively. An experiment was performed to test the performance of the imaging system in continuous monitoring of honey bee pollen foraging behavior as well as to investigate the effect caused by weather factors. The incoming and outgoing honey bee count were recorded and used to calculate indices based on the hourly and daily recorded counts for further analyses. The experimental results and analyses revealed that the daily pollen foraging trip ratio was 24.5 ± 3.5%; a single beehive collected about 49.1 ± 11.0 g of pollen per day. The pollen foraging trip count increased with increasing temperature and light intensity, and decreased with increasing relative humidity, rain level and wind speed. A significant reduction of pollen foraging activities was observed in heavy rainfall or gentle breeze conditions. This study not only quantitatively presents the effect of environmental factors on pollen foraging behavior, but also demonstrates the efficacy of the proposed imaging system. The automated imaging system can be applied as an efficient and reliable tool for researchers to gain deeper insights into honey bee foraging behavior, and help beekeepers achieve beehive management. ? 2021 Elsevier B.V.
Subjects
Embedded system
Environmental monitoring
Image processing
Object recognition
Object tracking
Behavioral research
Deep learning
Embedded systems
Food products
Imaging systems
Object detection
Rain
Wind
Automated analysis
Automated monitoring
Embedded-system
Environmental Monitoring
Foraging behaviours
Foraging trips
Honey bee
Images processing
Object Tracking
Objects recognition
automation
classification
environmental conditions
error analysis
foraging behavior
foraging efficiency
honeybee
image processing
monitoring system
pollen
precision
tracking
wind velocity
Apis mellifera
Type
journal article