Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Biomechatronics Engineering / 生物機電工程學系
  4. Automated monitoring and analyses of honey bee pollen foraging behavior using a deep learning-based imaging system
 
  • Details

Automated monitoring and analyses of honey bee pollen foraging behavior using a deep learning-based imaging system

Journal
Computers and Electronics in Agriculture
Journal Volume
187
Date Issued
2021
Author(s)
Ngo T.N
Rustia D.J.A
Yang E.-C  
TA-TE LIN  
DOI
10.1016/j.compag.2021.106239
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108697224&doi=10.1016%2fj.compag.2021.106239&partnerID=40&md5=c3d3d3652e511328bed6012ed5899ca6
https://scholars.lib.ntu.edu.tw/handle/123456789/605945
Abstract
Pollen foraging efficiency provides vital information for the behavioral research on honey bees. The pollen production of beehives can be measured by manually weighing the pollen collected from pollen traps. For long-term pollen foraging monitoring, this approach is both inefficient and laborious. This study presents an efficient method for automatically monitoring the pollen foraging behavior and environmental conditions through an embedded imaging system. The imaging system uses an off-the-shelf camera installed at the beehive entrance to acquire video streams that are processed using the developed image processing algorithm. A lightweight real-time object detection and deep learning-based classification model, supported by an object tracking algorithm, was trained for counting and recognizing honey bee into pollen or non-pollen bearing class. The F1-score was 0.94 for pollen and non-pollen bearing honey bee recognition, and the precision and recall values were 0.91 and 0.99, respectively. For foraging trip counting algorithm, the mean average percent errors of the pollen bearing honey bee count and the total incoming honey bee count were 8.45 ± 2.72% and 10.55 ± 2.10%, respectively. An experiment was performed to test the performance of the imaging system in continuous monitoring of honey bee pollen foraging behavior as well as to investigate the effect caused by weather factors. The incoming and outgoing honey bee count were recorded and used to calculate indices based on the hourly and daily recorded counts for further analyses. The experimental results and analyses revealed that the daily pollen foraging trip ratio was 24.5 ± 3.5%; a single beehive collected about 49.1 ± 11.0 g of pollen per day. The pollen foraging trip count increased with increasing temperature and light intensity, and decreased with increasing relative humidity, rain level and wind speed. A significant reduction of pollen foraging activities was observed in heavy rainfall or gentle breeze conditions. This study not only quantitatively presents the effect of environmental factors on pollen foraging behavior, but also demonstrates the efficacy of the proposed imaging system. The automated imaging system can be applied as an efficient and reliable tool for researchers to gain deeper insights into honey bee foraging behavior, and help beekeepers achieve beehive management. ? 2021 Elsevier B.V.
Subjects
Embedded system
Environmental monitoring
Image processing
Object recognition
Object tracking
Behavioral research
Deep learning
Embedded systems
Food products
Imaging systems
Object detection
Rain
Wind
Automated analysis
Automated monitoring
Embedded-system
Environmental Monitoring
Foraging behaviours
Foraging trips
Honey bee
Images processing
Object Tracking
Objects recognition
automation
classification
environmental conditions
error analysis
foraging behavior
foraging efficiency
honeybee
image processing
monitoring system
pollen
precision
tracking
wind velocity
Apis mellifera
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science