Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures
 
  • Details

Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures

Journal
Accounts of Chemical Research
Journal Volume
51
Journal Issue
8
Pages
1764-1773
Date Issued
2018
Author(s)
Li C.
Iqbal M.
Lin J.
Luo X.
Jiang B.
Malgras V.
Wu K.C.-W.  
Kim J.
Yamauchi Y.
DOI
10.1021/acs.accounts.8b00119
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/408839
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051930687&doi=10.1021%2facs.accounts.8b00119&partnerID=40&md5=29dad6a00adc0ec22bb87f09912fc0b8
Abstract
ConspectusWell-constructed porous materials take an essential role in a wide range of applications, including energy conversion and storage systems, electrocatalysis, photocatalysis, and sensing. Although the tailored design of various nanoarchitectures has made substantial progress, simpler preparation methods are compelled to meet large-scale production requirements. Recently, advanced electrochemical deposition techniques have had a significant impact in terms of precise control upon the nanoporous architecture (i.e., pore size, surface area, pore structure, etc.), enabling access to a wide range of compositions. In this Account, we showcase the uniqueness of electrochemical deposition techniques, detail their implementation toward the synthesis of novel nanoporous metals, and finally outline the future research directions.Nanoporous metallic structures are attractive in that they can provide high surface area and large pore volume, easing mass transport of reactants and providing high accessibility to catalytically active metal surface. The great merit of the electrochemical deposition approach does not only lie in its versatility, being applicable to a wide range of compositions, but also in the nanoscale precision it affords when it comes to crystal growth control, which cannot be easily achieved by other bottom-up or top-down approaches.In this Account, we describe the significant progress made in the field of nanoporous metal designed through electrochemical deposition approaches using hard templates (i.e., porous silica, 3D templates of polymer and silica colloids) and soft templates (i.e., lyotropic liquid crystals, polymeric micelles). In addition, we will point out how it accounts for precise control over the crystal growth and describe the unique physical and chemical properties emerging from these novel materials. Up to date, our group has reported the synthesis of several nanoporous metals and alloys (e.g., Cu, Ru, Rh, Pd, Pt, Au, and their corresponding alloys) under various conditions through electrochemical deposition, while investigating their various potential applications. The orientation of the channel structure, the composition, and the nanoporosity can be easily controlled by selecting the appropriate surfactants or block copolymers. The inherent properties of the final product, such as framework crystallinity, catalytic activity, and resistance to oxidation, are depending on both the composition and pore structure, which in turn require suitable electrochemical conditions. This Account is divided into three main sections: (i) a history of electrochemical deposition using hard and soft templates, (ii) a description of the important mechanisms involved in the preparation of nanoporous materials, and (iii) a conclusion and future perspectives. We believe that this Account will promote a deeper understanding of the synthesis of nanoporous metals using electrochemical deposition methods, thus enabling new pathways to control nanoporous architectures and optimize their performance toward promising applications such as catalysis, energy storage, sensors, and so forth. Copyright ? 2018 American Chemical Society.
SDGs

[SDGs]SDG7

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science