Cost-sensitive Label Embedding for Multi-label Classification
Date Issued
2016
Date
2016
Author(s)
Huang, Kuan-Hao
Abstract
Label embedding (LE) is an important family of multi-label classification algorithms that digest the label information jointly for better performance. Different real-world applications evaluate performance by different cost functions of interest. Current LE algorithms often aim to optimize one specific cost function, but they can suffer from bad performance with respect to other cost functions. In this paper, we resolve the performance issue by proposing a novel cost-sensitive LE algorithm that takes the cost function of interest into account. The proposed algorithm, cost-sensitive label embedding with multidimensional scaling (CLEMS), approximates the cost information with the distances of the embedded vectors using the classic multidimensional scaling approach for manifold learning. CLEMS is able to deal with both symmetric and asymmetric cost functions, and effectively makes cost-sensitive decisions by nearest-neighbor decoding within the embedded vectors. Theoretical results justify that CLEMS achieves the cost-sensitivity and extensive experimental results demonstrate that CLEMS is significantly better than a wide spectrum of existing LE algorithms and state-of-the-art cost-sensitive algorithms across different cost functions.
Subjects
multi-label classification
cost-sensitive
label embedding
Type
thesis
File(s)
Loading...
Name
ntu-105-R03922062-1.pdf
Size
23.32 KB
Format
Adobe PDF
Checksum
(MD5):f143607bd336ca993162672f84ec41cb