Publication: The Fatigue Analysis for the Pressure Hull of Submarine
dc.contributor | 李雅榮 | en |
dc.contributor.author | Chang, Chia-Zong | en |
dc.creator | Chang, Chia-Zong | en |
dc.date | 2006 | en |
dc.date.accessioned | 2007-11-26T01:00:00Z | |
dc.date.accessioned | 2018-06-28T20:54:37Z | |
dc.date.available | 2007-11-26T01:00:00Z | |
dc.date.available | 2018-06-28T20:54:37Z | |
dc.date.issued | 2006 | |
dc.description.abstract | The structure of the submarine needs resist deep water pressure, buckle, under water shock, collision and fatigue damage. And the focus of design of pressure hull must have the capability to sustain deep water pressure, buckle, under water shock, collision and fatigue damage; nevertheless, the analysis of deep water pressure, buckle, under water shock and collision had been discussed. So, the aim of this research is to obtain the fatigue strength of submarine pressure hull under deep water pressure in the change. Because of different task, the submarine will go on with float and dive in different depth, use to conceal the whereabouts. When the pressure hull sustain cyclic water pressure, the fatigue problem will appear. The discontinuous place of the submarine structure is the key area of the fatigue damage happened, it is worthy concern. As long as obtain S-N curve, the actual load history and the cumulative damage rule of the submarine pressure hall, the estimate of the fatigue life with pressure hull become possible. Refer to the numerical pressure hull model of U209 Submarine established before. The stress analysis of pressure hall with cyclic water pressure will discuss where the place of local stress concentration occurs most possibly. Make a study of each local area of the cumulative fatigue damage for predict fatigue life of pressure hull. Additionally, when the mend of the man hole in the pressure hull doesn’t exist, it will cause which kind of influence on the fatigue life of pressure hull. To determine whether the design of the pressure hall can satisfy the requirement of a military submarine. | en |
dc.description.tableofcontents | 目 錄 頁次 摘要………………......................................................................................................... I 目錄................................................................................................................................. III 圖目錄............................................................................................................................. V 表目錄............................................................................................................................. Ⅶ 第一章 序論 1-1. 研究動機...................................................................................................... 1 1-2. 研究方法...................................................................................................... 2 1-3. 文獻回顧...................................................................................................... 3 1-4. 論文架構...................................................................................................... 4 第二章 疲勞基礎理論 2-1. S-N曲線與疲勞限........................................................................................ 5 2-2. 影響疲勞強度之因子.................................................................................. 6 2-3. 雨流計數法………………………….......................................................... 13 2-4. 疲勞損傷法則…………………………….................................................. 16 第三章 壓力殼強度之分析理論 3-1. 問題敘述...................................................................................................... 17 3-2. 圓筒殼理論………...................................................................................... 18 3-3. 數值解析方法………….............................................................................. 22 3-4. ANSYS之數值分析...................................................................................... 26 3-4-1. 基本關係式....................................................................................... 26 3-3-2. 彈塑性力學與增量分析…............................................................... 27 3-5. 模型元素之選用.......................................................................................... 31 第四章 壓力殼強度之實例分析 4-1. 有限元素分析模型...................................................................................... 35 4-2. 計算結果比較…………………………….................................................. 43 4-2-1. 模型可靠性分析………….…………….................................................. 43 4-2-2. 計算結果比較……………………………............................................... 44 4-3. 修改結構尺寸之計算結果..…..…………….............................................. 49 4-3-1. 削減開孔底板補強之計算………………............................................... 49 4-3-2. 同時削減開孔底板補強與環肋之計算................................................... 51 第五章 結論與建議 5-1. 結論……...................................................................................................... 56 5-2. 建議……………………….......................................................................... 57 參考文獻......................................................................................................................... 58 | zh_TW |
dc.format.extent | 2349110 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier | zh-TW | en |
dc.identifier.uri | http://ntur.lib.ntu.edu.tw//handle/246246/51071 | |
dc.identifier.uri.fulltext | http://ntur.lib.ntu.edu.tw/bitstream/246246/51071/1/ntu-95-R92525050-1.pdf | |
dc.language | zh-TW | en |
dc.language.iso | en_US | |
dc.relation.reference | 參考文獻 [1] 許家豪,李雅榮,“潛艦壓力殼結構分析”,台灣大學工程科學及海洋工程學研究所碩士論文,2004。 [2] Sasaki Tadayoshi, “On Underwater Observation Vessels in Japan”, 6th Annual MTS Conference and Exhibition, pp. 227-262, 1970. [3] Geyer R. A, Submersibles and Their Use in Oceanography and Ocean Engineering, Amsterdam, Elsevier Scientific, Inc., 1978. [4] 徐慶瑜,梁卓中,“潛艦壓力殼疲勞壽限評估之研究”,中正理工學院博士論文,1999。 [5] “現代の潛水艦”,學習研究社,日本東京,2001。 [6] Palmgren A. , “Die Lebanstaver von Kugellagern”, ZVDI, Vol. 68, 339, 1924. [7] Miner, M. A. , “Cumulative Damage in Fatigue”, Journal of Applied Mechanics, 12, A-159, 1945. [8] Coffin L. F., “A Study of Effects of Cyclic Thermal Stresses on a Ductile Metal”, Transactions of the American Society of Mechanical Engineers, pp.931-950, 1954. [9] Manson S. S., “Behavior of Materials under Conditions of Thermal Stress”, National Advisory Commission on Aeronautics, Report 1170, Cleveland: Lewis Flight Propulsion Laboratory, 1954. [10] Dunham F. W., “Fatigue Testing of Large-Scale Models of Submarine Structural Details”, Marine Technology, pp. 299-307, 1965. [11] Vasta John and Palermo Peter M., “An Engineering Approach to Low-Cycle Fatigue of Ship Structures”, Trans. SNAME, 1965. [12] Francis Philip H., Lankford James Jr and Lyle Fred F. Jr., “Subcritical Crack Growth and Ship Structural Design”, Marine Technology, 13(2), pp. 152-160, 1976. [13] Mattos F. V. Lawrence, “Estimation of the Fatigue Crack Initiation Life in Wield Using Low Cycle Fatigue Concepts”, SAE SP-424, 1977. [14] Riggs, Robert P., “Fatigue Considerations for Semisubmersible Structures”, Marine Technology, 16(1), pp. 49-62, 1979. [15] Fricke Wolfgang and Paetzold Hans, “Application of the Cyclic Strain Approach to the Fatigue Failure of Ship Structural Details”, Journal of the Ship Research, 31(3), pp.177-185, 1987. [16] Bhuyan G and Vosikovsky O. , “Prediction of Fatigue Crack Initiation Lives for Welded Plate T-joints Based on the Local Stress-Strain Approach”, Int. J. Fatigue, 11(3), pp. 153-159, 1989. [17] 陳孝渝,潛艇和潛水器結構的低周疲勞,中共國防工業出版社,北京,1990。 [18] Amzallag J.P. Gerey, J.L. Robert and Bahuaud J., “Standardization of the Rainflow Counting Method for Fatigue Analysis”, Fatigue, 16, 287,293, 1994. [19] Merah T. Bui-Quoc and Bernard M. , “A -Based Method for Calculating LCF Life of Notched Specimen”, J. of Pressure Vessel Technology, Trans. of the ASME, pp.116, pp.403, pp.408, 1994. [20] Norman E. Dowling, MECHANICAL BEHAVIOR OF MATERIALS Second Edition, Prentice-Hall, Ina., 1999. [21] 劉松柏編譯,“材料強度破壞學”,成璟文化事業公司,台北新店,2000。 [22] 丁秉煌,黃俊仁,“金屬材料疲勞裂縫延伸壽命之統計分析”,中央大學機械工程研究所,2000。 [23] 許玉銓,黃俊仁,“SA533 B1 壓力槽鋼材之高週疲勞壽限評估模式研究”, 中央大學機械工程研究所,2001。 [24] M. Matsuishi and T. Endo, “Fatigue of Metals Subjected to Varying Stress”, paper presented to Japan Society of Mechanical Engineers, Fukuoka, Japan, March 1968. [25] American Society for Testing and Materials, Annual Book of ASTM Standards, Section 3: Metals Test Methods and Analytical Procedure, Vol. 03.01 - Metals-Mechanical Testing; Elevated and Low-Temperature Tests, ASTM, Philadelphia, pp. 836-848,1986. [26] R. Sunder, S. A. Seetharam and T. A. Bhaskaran, “Cycle Counting for Fatigue Crack Growth Analysis”, International Journal of Fatigue 6, No. 3, pp.147-156, 1984. [27] Julie A. Bannantine, Jess J. Comer and James L. Handerock, FUNDAMENTALS OF METAL FATIGUE ANALYSIS, Prentice-Hall, Ina., 1999. [28] 八十二年度研究發展專題,“船用高張力鋼之疲勞強度分析”CSBC-RD-0302,1993。 [29] 周松輝,李雅榮,“船體構件之疲勞強度”,NTU-NAOE.-Tech. Report 424,1993。 [30] 劉仲益,李雅榮,“貨櫃船疲勞強度之探討”,台灣大學造船及海洋工程學研究所,1994。 [31] 廖飛揚,李雅榮,“貨櫃船疲勞壽命預估方法之探討”,台灣大學造船及海洋工程學研究所,1995。 [32] L.B.R. Robles, M.A. Buelta, E.Goncalves and G.F.M. Souza, “A Method for the evaluation of the fatigue operational life of submarine pressure hulls”,2000. [33] 張志鴻,李雅榮,“對接銲道缺陷之散裝貨輪疲勞強度研究”,台灣大學造船及海洋工程學研究所碩士論文,2001。 [34] 李雅榮,基礎結構學,台大造船系所教材,1990 [35] 羅光閔,李雅榮,“小型潛艇壓力殼耐壓強度之研究”, 台灣大學工程科學及海洋工程學研究所碩士論文,2003。 [36] 林毅著,李雅榮譯,“輕結構理論及應用(上)”,曉園出版社,1985 [37] Stephen P. Timoshenko and S. Woinowsky-Krieger, “Theory of Plates and Shells”,1959 [38] 王勗成、邵敏,“有限元素法基礎理論與數值方法”,亞東書局,1980。 [39] 聶武、孫麗萍,“船舶計算結構力學”,哈爾濱工程大學出版社,1999。 | zh_TW |
dc.subject | 潛艦 | en |
dc.subject | 壓力殼 | en |
dc.subject | 疲勞壽命 | en |
dc.subject | submarine | en |
dc.subject | pressure hull | en |
dc.subject | fatigue life | en |
dc.subject.classification | [SDGs]SDG14 | |
dc.title | The Fatigue Analysis for the Pressure Hull of Submarine | en |
dc.type | thesis | en |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1