Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Research on the Testability of Quantum Boolean Circuits
 
  • Details

Research on the Testability of Quantum Boolean Circuits

Date Issued
2009
Date
2009
Author(s)
Chou, Yao-Hsin
URI
http://ntur.lib.ntu.edu.tw//handle/246246/188012
Abstract
Circuit testing is now over 45 years and poses many considerable challenges. The circuits of modern electrical appliances become more and more complicated and the cost of circuit testing is rapidly increasing along with the complexity of the chip. According to Inter/National Technology Roadmap for Semiconductors 2001/1997, test cost will become critical part of the total cost in ten years. It is indispensable to control these costs and provide a cost-effective solution. Therefore, it is important to develop efficient testing approaches. Testing is also the key to many fault tolerance approaches that improve product reliability.owadays, every electronic device/electrical appliance we use is built by Boolean circuits. In this project, a novel method is proposed to perform logic testing for Boolean circuit by utilizing the quantum computation. In the future, any Boolean circuit can be tested easily, quickly, and cost-effectively, so that reliable and inexpensive products can be acquired by everyone.t has been proved that any Boolean circuit can have its quantum version. In this project, we showed that quantum Boolean circuits can be arranged into a 1-testable quantum iterative logic array (QILA). Furthermore, with superposition, which is a nanoscale phenomenon in the quantum computation, any quantum Boolean circuit and any QILA can be tested in just a few steps for any given classical Boolean function. By utilizing nanotechnology, these methods provide a smooth migration to the next generation circuit design and may intrinsically change the IC design flow in the future.ecently, a systematic procedure was proposed to derive a minimum input quantum circuit for any given classical logic with the generalized quantum Toffoli gate, which is universal in Boolean logic. Since quantum Boolean circuits are reversible, we can apply this property to build quantum iterative logic array (QILA). QILA can be easily tested in constant time (C-testable) if stuck-at fault model is assumed.n this project, we try to use Hadamard and general CCN gates to make QILA 1-testable. That is, for any quantum Boolean circuit, the number of test patterns is independent of both the size of the array and the length of the inputs.anotechnology has made the semiconductor industry to keep up with the growth of consumers'' performance--capacity demands. Sophisticated semiconductor fabrication techniques are used for the production of nanoscale structures. By nanometer technologies, there are more transistors fabricated on a single chip with increasing integration scale, thus reducing the cost per transistor.owever, nanometer-scale devices have much higher manufacturing fault rates and are more sensitive to failures of transistors and wires owing to many external factors. Consequently, the difficulty of testing each transistor increases as the complexity of devices increases. Testing such highly complex and dense circuits becomes very difficult and expensive.n the other hand, when devices are getting smaller and smaller, the quantum effect appears. With nanoscale phenomenon such as superposition or entanglement, we can perform quantum computation to accomplish some tasks that are classically impossible. Some of these examples are Shor''s factorization and Grover''s search algorithm.t is interesting to note that these nano-phenomena can be used to solve the circuit testing problem as well. Previous study showed that any classical circuit can be implemented by a straightforward replacement algorithm with auxiliary qubits as intermediate storage. Recently, a construction procedure of minimum input quantum Boolean circuit was proposed.he constructed quantum Boolean circuits are reversible. Such circuits are of interest for several reasons. One of the important reasons is energy saving. Reversible circuits are information lossless and hence tend to dissipate relatively little energy. According to Landauer''s principle, it is possible to construct a computer using reversible circuits that can compute with arbitrarily small amounts of energy.nother reversible circuit''s property of particular interest is that the Boolean function of a reversible circuit is bijective (one-to-one and onto); hence it can be used to form an iterative logic array (ILA), a system that consists of identical modules arranged in a geometrically regular interconnection pattern. ILA is well known to be easily testable.n this project, we study the testing properties on quantum Boolean circuit and quantum iterative logic array (QILA). QILA consists of reversible quantum circuits constructed from a library of universal reversible gates, including quantum NOT, controlled-NOT (CNOT), generalized controlled-controlled-NOT (CCN), and Hadamard gates. Under stuck-at fault and cell fault model, we show that any QILA and quantum Boolean circuits are 1-testable. That is, the circuits can be tested with only one test pattern.
Subjects
Quantum Computing
Quantum Circuits
Reversible Circuit
Circuit Testing
Iterative logic array (ILA)
C-testable
M-testable
design for testability (DFT)
1-testable
Built-in Self-Test (BIST)
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-98-D94921017-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):116706b67cdf4d8db85abb4c328188c5

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science