Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Pricing Parisian Options: Combinatorics, Simulation, and Parallel Processing
 
  • Details

Pricing Parisian Options: Combinatorics, Simulation, and Parallel Processing

Date Issued
2008
Date
2008
Author(s)
Wu, Cheng-Wei
URI
http://ntur.lib.ntu.edu.tw//handle/246246/183649
Abstract
Financial engineering and financial innovation flourished in last decades. We have developed many new financial products to provide hedge instruments for risk management, and promoted market efficiency and completeness. The pricing problems of this financial field will try to build mathematical models and derive analytic pricing formulas. But most exotic derivatives are too complicated to derive formulas. We must use computers to handle numerical methods and simulations, so computer science can give them a favor. This thesis discusses pricing of Parisian options and includes a lot of subjects: financial theory, probability & statistics, discrete mathematics, computational complexity, design & analysis of algorithms, and parallel processing.Parisian options are path-dependent options and their closed-form solutions are not available up to now. We propose two fast financial algorithms to solve it. First we price Parisian options based on a combinatorial approach in binomial tree by Costabile in 2002. To refine Costabile’s algorithm, time complexity O(n^3) can be reduced to O(n^2); If binomial coefficients are given, the space complexity O(n^2) could be reduced to O(n). Second on Monte Carlo simulation, we introduce the inverse Gaussian distribution and its sampling method. To combine simulations and the inverse Gaussian distribution sampling, it can reduce divided time intervals to save computational time. Because the paths generated by Monte Carlo simulation are independent, it is easy to apply parallel processing. Nowadays multi-core processors are very popular, it is also a good idea to enhance computational efficiency. We give some descriptions and applications on it.All financial algorithms in this thesis are implemented in the C programming language. We execute the programs on our high-performance computing clustered platform, and deal with simulation jobs synchronously. Then the system can be fully exploited.
Subjects
Parisian options
barrier options
option pricing
algorithm
binomial tree model
combinatorial method
Monte Carol simulation
inverse Gaussian distribution
parallel processing
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-97-R95922111-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):5d6869b4ec5c6aecde7da1c3e2b27d4a

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science