Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Agronomy / 農藝學系
  4. Simulation Study of Genomic Selection in Rice: Establishment of Prediction Model and Identification of Minimal Experimental Inputs for the Training Population
 
  • Details

Simulation Study of Genomic Selection in Rice: Establishment of Prediction Model and Identification of Minimal Experimental Inputs for the Training Population

Date Issued
2013
Date
2013
Author(s)
Lee, Shin-Ruei
URI
http://ntur.lib.ntu.edu.tw//handle/246246/263766
Abstract
Genomic Selection is a new strategy of marker-assisted selection that selects superior individuals based on their genomic estimated breeding values. The genomic estimated breeding values are calculated solely using individual genotypes of substantial markers through a statistical prediction model built by data collecting from a training population. Prediction accuracy of genomic estimated breeding values can be affected by several factors, including statistical methods of the prediction model, number of markers genotyped, and size of the training population. In the current study, three statistical methods – RR-BLUP, BL, and RKHS – all of which have great computing ability were chosen to establish the prediction model. 192 different sets of genotypic and phenotypic data of rice recombinant inbred populations were simulated in silico as training populations among which effective QTL numbers, population size, marker numbers, and narrow-sense heritability were assigned at different levels. In order to determine the most effective inputs of a training population for given narrow-sense heritability of a characteristics, prediction accuracy of genomic estimated breeding values was calculated and compared for all simulated training populations using the three statistical methods. At each different level of narrow-sense heritability, sets of training populations showing that genomic selection is more effective than phenotypic selection were identified, and then the set with lowest marker numbers and smallest size of the training population were selected.
Subjects
基因組選種
預測模型
規模選定
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-102-R99621110-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):1c38b634d3134a4817d9823201ae9a65

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science