Intraoperative Detection of Surgical Gauze Using Deep Convolutional Neural Network
Journal
Annals of biomedical engineering
Journal Volume
51
Journal Issue
2
Pages
352
Date Issued
2023-02
Author(s)
Abstract
During laparoscopic surgery, surgical gauze is usually inserted into the body cavity to help achieve hemostasis. Retention of surgical gauze in the body cavity may necessitate reoperation and increase surgical risk. Using deep learning technology, this study aimed to propose a neural network model for gauze detection from the surgical video to record the presence of the gauze. The model was trained by the training group using YOLO (You Only Look Once)v5x6, then applied to the testing group. Positive predicted value (PPV), sensitivity, and mean average precision (mAP) were calculated. Furthermore, a timeline of gauze presence in the video was drawn by the model as well as human annotation to evaluate the accuracy. After the model was well-trained, the PPV, sensitivity, and mAP in the testing group were 0.920, 0.828, and 0.881, respectively. The inference time was 11.3 ms per image. The average accuracy of the model adding a marking and filtering process was 0.899. In conclusion, surgical gauze can be successfully detected using deep learning in the surgical video. Our model provided a fast detection of surgical gauze, allowing further real-time gauze tracing in laparoscopic surgery that may help surgeons recall the location of the missing gauze.
Subjects
Convolutional neural network
Deep learning
Detection
Gauze
Laparoscopic surgery
You Only Look Once (YOLO)
Publisher
SPRINGER
Type
journal article