Publication:
Composite Convex Minimization Involving Self-concordant-Like Cost Functions.

cris.lastimport.scopus2025-05-09T22:57:29Z
cris.virtual.departmentComputer Science and Information Engineeringen_US
cris.virtual.departmentNetworking and Multimediaen_US
cris.virtual.departmentInstitute of Statistics and Data Scienceen_US
cris.virtual.orcid0000-0003-2454-7249en_US
cris.virtualsource.departmentd3c86c22-c916-4bf7-af2b-ecd37754e87b
cris.virtualsource.departmentd3c86c22-c916-4bf7-af2b-ecd37754e87b
cris.virtualsource.departmentd3c86c22-c916-4bf7-af2b-ecd37754e87b
cris.virtualsource.orcidd3c86c22-c916-4bf7-af2b-ecd37754e87b
dc.contributor.authorTran-Dinh, Quocen_US
dc.contributor.authorYen-Huan Lien_US
dc.contributor.authorCevher, Volkanen_US
dc.creatorTran-Dinh Q;Li Y.-H;Cevher V.
dc.date.accessioned2019-05-07T07:26:54Z
dc.date.available2019-05-07T07:26:54Z
dc.date.issued2015
dc.descriptionMetz, France
dc.description.abstractThe self-concordant-like property of a smooth convex function is a new analytical structure that generalizes the self-concordant notion. While a wide variety of important applications feature the selfconcordant- like property, this concept has heretofore remained unexploited in convex optimization. To this end, we develop a variable metric framework of minimizing the sum of a “simple” convex function and a self-concordant-like function.We introduce a new analytic step-size selection procedure and prove that the basic gradient algorithm has improved convergence guarantees as compared to “fast” algorithms that rely on the Lipschitz gradient property. Our numerical tests with real-data sets show that the practice indeed follows the theory. © Springer International Publishing Switzerland 2015.
dc.identifier.doi10.1007/978-3-319-18161-5_14
dc.identifier.issn21945357
dc.identifier.scopus2-s2.0-84942614819
dc.identifier.urihttps://doi.org/10.1007/978-3-319-18161-5_14
dc.identifier.urihttps://scholars.lib.ntu.edu.tw/handle/123456789/406509
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84942614819&doi=10.1007%2f978-3-319-18161-5_14&partnerID=40&md5=cfd0194da0bbc3447fd85b1482624dd3
dc.relation.ispartofAdvances in Intelligent Systems and Computing
dc.relation.journalvolume359
dc.relation.pages155-168
dc.subject.otherComputation theory; Convex optimization; Cost functions; Functions; Information systems; Ion beams; Management science; Analytical structure; Convex functions; Convex minimization; Gradient algorithm; Improved convergence; Lipschitz gradients; Step size selection; Variable metric; Information management
dc.titleComposite Convex Minimization Involving Self-concordant-Like Cost Functions.en_US
dc.typeconference paper
dspace.entity.typePublication

Files