Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. mSIGMA: 考慮訊號完整度及製造度之多階晶片繞線系統
 
  • Details

mSIGMA: 考慮訊號完整度及製造度之多階晶片繞線系統

mSIGMA: A Multilevel Full-Chip Routing System Considering SIGnal-integrity and MAnufacturability

Date Issued
2005
Date
2005
Author(s)
Ho, Tsung-Yi
DOI
en-US
URI
http://ntur.lib.ntu.edu.tw//handle/246246/53409
Abstract
As technology advances into nanometer territory, the paradigm shift of the routing problem is indispensable to cope with three major challenges: design complexity, signal-integrity problem, and manufacturability problem. As Moore's Law continues unencumbered into the nanometer era, chips are reaching 100 M gates in size, process geometries have shrunk to 90 nm and below, and engineers have to face compounded design complexity with every new design. These nanometer-scale designs require a new generation of physics-aware and manufacturing- aware routing. At 90 nm and below, there are so many signal-integrity issues that design teams cannot manually correct them all. Nanometer routers must prevent and correct these effects on-the-fly in order to reach timing closure. From a manufacturability standpoint, nanometer routers must explicitly support the ever increasing design complexity, and be capable of adapting to the requirements of timing, signal integrity, process antenna effect, and new interconnect architecture such as X-architecture. In this Dissertation, we propose a novel multilevel full-chip router, namely mSIGMA for SIGnal-integrity and MAnufacturability optimization. To handle the ever increasing design complexity of gigascale integration, the mSIGMA use a multilevel framework that has attracted much attention in the literature recently. The traditional multilevel framework employs a two-stage technique: coarsening followed by uncoarsening. The coarsening stage iteratively groups a set of circuit components (e.g., circuit nodes, cells, modules, routing tiles, etc.) based on a predefined cost metric until the number of components being considered is smaller than a threshold. Then, the uncoarsening stage iteratively ungroups a set of previously clustered circuit components and refines the solution by using optimization techniques. Different with the previous multilevel routing framework, we introduce an intermediate track assignment phase between coarsening and uncoarsening stages, to improve run-time and achieve optimization. To handle the signal-integrity problem, especially the crosstalk problem, we propose a fast layer/track assignment heuristic for crosstalk optimization. We first build the horizontal constraint graph (HCG) for all segments in the panel. For the crosstalk-driven layer assignment problem, we resort to a simple yet efficient heuristic by constructing a maximum spanning tree from the given HCG. Since a tree can be k colored in linear time if we have k layers, we shall first partition the vertices incident on edges with larger costs (coupling lengths) and allocates the corresponding segments to different layers. Then, our track assignment algorithm starts by finding the maximal sets of conflicting segments, and assigns these conflicting segments by the bipartite assignment graph till they are assigned in the panel. To handle the manufacturability problem, such as process antenna effect and the X-architecture, we also propose a desirable track assignment in our multilevel routing framework for manufacturability optimization. To solve the antenna effect, we propose a built-in jumper insertion approach for antenna effect avoidance. To take the advantage of the X-architecture, we also adopt our new multilevel routing framework for the X-based architecture, and the experimental results show the promise of wirelength and delay reduction.
Subjects
積體電路實體設計
繞線
訊號完整度
製造度
VLSI Physical Design
Routing
Signal-integrity
Manufacturability
SDGs

[SDGs]SDG16

Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-94-D90921011-1.pdf

Size

23.31 KB

Format

Adobe PDF

Checksum

(MD5):aeb88cb18d7bd4e3c13902fad8de28ff

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science