Experimental study on the dye-sensitized solar cells using TiO2 nanoparticles
Date Issued
2009
Date
2009
Author(s)
Tseng, Kuo-Lun
Abstract
Flame synthesis of nanosized titanium oxide particles with the precursor titanium isopropoxide (TTIP) were used in dye-sensitized solar cells (DSSCs). In this study, particles collected in the premixed flames were studied for their morphology, crystal phase purity, and size. Results from X-ray diffraction (XRD) analyses show that TiO2 crystal phase purity and the size of TiO2 nanoparticles may be effectively controlled by the oxygen concentration and equivalence ratio(Φ). As a result, the anatase purity and the size of TiO2 particle can be 67% and 50nm. TiO2 nanoparticles are formed under the conditions of O2/N2=30/70,Φ=1.0, and TTIP=0.89%. Because of the different collected mothod, this particle anatase purity is lower than 97.7% that collected before. However, DSSCs are developed by using a dye-sensitized nanocrystalline TiO2 film display the photo-energy efficiency of 1.17%.DSSC is an alternative method for the development of a new generation of photovoltaic devices. DSSC is a combination of several materials, consisting of a transparent electrode coated with a dye-sensitized mesoporous film of nanocrystalline particles of TiO2, an electrolyte containing a suitable redox-couple and a platinum coated counter-electrode. Ruthenium 535-bis TBA (N719) is used as the dyesensitizers. The photo-energy conversion efficiency of DSSCs depends on the properties of its components. The photo-energy conversion efficiency of DSSCs can be optimized up to 2.115%, when the anode electrode made by doctor blade method with three layers. Furthermore, the spacer thickness is 100μm, and the electrolyte condition become [LiI]-[ I2] is 0.5M-0.05M in volume ratio Propylene Carbonate(PC):Acetonitrile is 9:1 with 0.5M 4-tert-butylpyridine(TBP).
Subjects
Nanoparticles
TiO2
Synthesis
DSSC
SDGs
Type
thesis
File(s)![Thumbnail Image]()
Loading...
Name
ntu-98-R96522118-1.pdf
Size
23.53 KB
Format
Adobe PDF
Checksum
(MD5):fc50baec4c6d908ec385ca24d784b24e
