Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Geosciences / 地質科學系
  4. The Finest Particle for Calculating Fracture Energy of Taiwan Chi-Chi Earthquake
 
  • Details

The Finest Particle for Calculating Fracture Energy of Taiwan Chi-Chi Earthquake

Date Issued
2011
Date
2011
Author(s)
Chen, Pei-Chu
URI
http://ntur.lib.ntu.edu.tw//handle/246246/254564
Abstract
Analyzing the particle size, shape and orientation on the faulting material has become a routine but important work in the fault zone. These data provide characteristics of fragmentation and comminuting process, and go further for information of fracture energy. In order to calculate the fracture energy, we need to know the particle size distributions of fault gouge which determine total fracture surface area. However, the finest particle of gouge or threshold of lower cut-off particle size is the most important parameter to dominate the amount of surface area. For example, there were different lower cut-off particle sizes in the Punchbowl and Chelungpu faults, with 1.6 nm and 50 nm respectively. Criteria for determining the threshold of lower cut-off size in the Chelungpu fault is the main purpose in this study. For comparing the mineral assemblage and the finest particles, we collected the samples from wall rock, fault damage zone, and fault core. Then, using the wet sieving, sedimentation, ultracentrifugation and automated ultrafiltration device (AUD) we separated the sizes of particle. Furthermore, particles in different size ranges (whole, 450-2000nm, 100-450nm, 50-100nm, < 50nm) and mineralogy were analyzed by the SEM, TEM and Synchrotron XRD. The wall rock from Chelungpu fault zone consists predominantly of quartz, chlorite, feldspar, kaolinite and 2M1-illite with the minimum particle size ranging from 50 to 100 nm. The results infer that the finest particle in natural sedimentary grinding is around 50 nm in diameter. In the other words, the fault core has the same mineral assemblage as wall rock, but the particle is finer than 50 nm, which comminuted by faulting. Based on the images of TEM, diameter of finest particle can be measured as, 29nm in average. Accordingly, this study calculates the fracture energy of 1999 Taiwan Chi-Chi earthquake as 6.04 MJm-2. Furthermore, the radiation efficiency is 0.83 that shows Chelungpu fault is a mature fault and the energy will be released with the radiation energy rather than the fracture energy during faulting.
Subjects
Chelungpu fault
Particle size
Fracture energy
radiation efficiency
Taiwan Chelungpu-fault Drilling Project
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-100-R98224202-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):02c39fe948726ea26a56740009bc632c

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science