Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. Other Colleges / 其他學院
  3. Graduate School of Advanced Technology / 重點科技研究學院
  4. Deep Learning for Detection of Fetal ECG from Multi-Channel Abdominal Leads
 
  • Details

Deep Learning for Detection of Fetal ECG from Multi-Channel Abdominal Leads

Journal
2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2018 - Proceedings
Date Issued
2018
Author(s)
La, Fang-Wen
PEI YUN TSAI  
DOI
10.23919/APSIPA.2018.8659503
URI
https://www.scopus.com/record/display.uri?eid=2-s2.0-85063535646&origin=resultslist
https://scholars.lib.ntu.edu.tw/handle/123456789/721456
Abstract
In this paper, we propose to use a CNN-based approach for fetal ECG detection from the abdominal ECG recording. Our work flow contains a pre-processing phase and a classification phase. In the pre-processing phase, abdominal ECG waveform is normalized and segmented. Then, short-time Fourier transform is applied to obtain time-frequency representation. The 2D representation is sent to 2D convolutional neural network for classification. Two convolutional layers, two pooling layers, one fully-connected layer are used. The softmax activation function is used at the output layer to compute the probabilities of four events. The classified results from multiple channels are fused to derive the final detection according to the respective detection accuracies. Compared to the K-nearest neighbor algorithm, the CNN-based classifier has better detection accuracy. © 2018 APSIPA organization.
Event(s)
10th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2018
Subjects
abdominal ECG
classification
convolutional neural network
Electrocardiogram (ECG)
fetal ECG
Description
Honolulu, 12 November 2018 through 15 November 2018
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science