Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Medicine / 醫學系
  4. Lacosamide Is a Novel Drug That Improves AGTPBP1 Knockout-Mediated Impairment of Neuronal and Dopaminergic Function.
 
  • Details

Lacosamide Is a Novel Drug That Improves AGTPBP1 Knockout-Mediated Impairment of Neuronal and Dopaminergic Function.

Journal
Molecular neurobiology
Journal Volume
62
Journal Issue
9
ISSN
1559-1182
Date Issued
2025-09
Author(s)
Wang, Hsin-Pei
Singh, Shekhar
LEE-CHIN WONG  
Hsu, Chia-Jui
Li, Shih-Chi
Lee, Shyh-Jye  
Lee, Chia-Hwa
Lee, Wang-Tso  
DOI
10.1007/s12035-025-05016-y
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/731736
Abstract
AGTPBP1 regulates microtubule stabilization through post-translational modification of alpha-tubulin. Mutations in the AGTPBP1 gene are associated with clinical phenotypes such as early postnatal cerebellar atrophy, ataxia, spasticity, and dystonia, highlighting its critical roles in both neurodevelopment and neurodegeneration. However, how AGTPBP1 affects neurite development and its function in dopaminergic neurons remains unclear. To investigate the role of AGTPBP1, we utilized both in vitro AGTPBP1 knockout (KO) cell models and zebrafish models. Our findings reveal that AGTPBP1 KO in cells leads to excessive neurite outgrowth and significantly increases expression of collapsin response mediator protein 2 (CRMP2). Additionally, AGTPBP1 KO results in mitochondrial dysfunction and a hyperdopaminergic state in differentiated neurons. In zebrafish, knockdown of AGTPBP1 caused reduced brain volume and impaired swimming behavior, indicating disrupted neurodevelopment and motor function. Given CRMP2's involvement in both cytoskeletal dynamics and mitochondrial activity, we tested lacosamide, a drug known to modulate CRMP2 expression and phosphorylation. Lacosamide treatment in vitro improved cell morphology and restored mitochondrial function, while in vivo, it rescued brain volume deficits and enhanced swimming performance in AGTPBP1-deficient zebrafish. In conclusion, AGTPBP1 knockout impairs neuronal differentiation, induces mitochondrial dysfunction, increases oxidative stress, and promotes a hyperdopaminergic state. Our study suggests that elevated CRMP2 expression may underlie the pathophysiology of cerebellar degeneration in AGTPBP1-related disorders. Targeting CRMP2 with lacosamide represents a promising therapeutic strategy for mitigating AGTPBP1-mediated neurodegeneration.
Subjects
AGTPBP1 knockout
Brain volume
Dopaminergic neurons
Lacosamide
Zebrafish
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science