Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Water adsorption in metal-organic frameworks with open-metal sites
 
  • Details

Water adsorption in metal-organic frameworks with open-metal sites

Journal
AIChE Journal
Journal Volume
61
Journal Issue
2
Pages
677-687
Date Issued
2015
Author(s)
Peng X.
Lin L.-C.
Sun W.
Smit B.
LI-CHIANG LIN  
DOI
10.1002/aic.14707
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84921270560&doi=10.1002%2faic.14707&partnerID=40&md5=279a8d0af10651b7bcb18aff307b55f4
https://scholars.lib.ntu.edu.tw/handle/123456789/611510
Abstract
H2O adsorptions inside porous materials, including silica zeolites, zeolite imidazolate frameworks, and metal-organic frameworks (MOFs) using molecular simulations with different water models are investigated. Due to the existence of coordinately unsaturated metal sites, the predicted adsorption properties in M-MOF-74 (M=Mg, Ni, Co, Zn) and Cu-BTC are found to be greatly sensitive to the adopted H2O models. Surprisingly, the analysis of the orientations of H2O minimum energy configuration in these materials show that three-site H2O models predict an unusual perpendicular angle of H2O plane with respect to the Metal-O4 plane, whereas those models with more than three sites give a more parallel angle that is in better agreement with the one obtained from density functional theory (DFT) calculations. In addition, the use of these commonly used models estimates the binding energies with the values lower than the ones computed by DFT ranging from 15 to 40%. To correct adsorption energies, simple approach to adjust metal-O(H2O) sigma parameters to reproduce the DFT-calculated binding energies is used. With the refined parameters, the computed water isotherms inside Mg-MOF-74 and Cu-BTC are in reasonable agreement with experimental data, and provide significant improvement compared to the predictions made by the original models. Further, a detailed inspection on the water configurations at higher-pressure region was also made, and observed that there is an interesting two-layer water network formed using three- and four-site models. ? 2014 American Institute of Chemical Engineers.
Subjects
Adsorption
Binding energy
Density functional theory
Metal-Organic Frameworks
Metals
Molecular structure
Network layers
Organometallics
Porous materials
Silica
Water
Zeolites
Adsorption energies
Adsorption properties
Metalorganic frameworks (MOFs)
Minimum energy configuration
Molecular simulations
Organic frameworks
Unsaturated metals
Water configuration
Driers (materials)
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science