Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Bioenvironmental Systems Engineering / 生物環境系統工程學系
  4. Future trends of residential building cooling energy and passive adaptation measures to counteract climate change: The case of Taiwan
 
  • Details

Future trends of residential building cooling energy and passive adaptation measures to counteract climate change: The case of Taiwan

Journal
Applied Energy
Journal Volume
184
Pages
1230-1240
Date Issued
2016
Author(s)
KUO-TSANG HUANG  
Hwang, R.-L.
DOI
10.1016/j.apenergy.2015.11.008
URI
http://www.scopus.com/inward/record.url?eid=2-s2.0-84950237682&partnerID=MN8TOARS
http://scholars.lib.ntu.edu.tw/handle/123456789/398637
Abstract
Measures for remodeling building envelopes in response to climate change have attracted much attention. To devise adequate countermeasures for existing buildings, it is important to understand how the energy consumption behavior of a building may change in the future. To this end, this study first used the morphing method to produce future hourly weather years for use in building simulations based on the predicted values provided by a GCM. The adaptive comfort model was used to identify the air-conditioning operation status during the hours of occupation of a mixed-mode typical residential building to determine cooling energy use. Annual cooling energy use in the past and in three future time slices, the 2020s, 2050s, and 2080s, were dynamically simulated with EnergyPlus. The simulations revealed increases in cooling energy of 31%, 59%, and 82% in the three time slices. Five passive design strategies for building remodeling are proposed, and their potential for mitigating the increases in cooling energy usage is discussed. The results reveal that although no individual strategy can neutralize the increases in cooling energy usage, a combination of several passive strategies may counteract the effects of climate change on cooling energy usage. © 2015 Elsevier Ltd
Subjects
Building cooling energy; Climate change; Future meteorological year; Passive building envelope adaptation; Typical meteorological year
SDGs

[SDGs]SDG7

[SDGs]SDG13

Other Subjects
Air conditioning; Energy utilization; Housing; Solar buildings; Adaptive comfort models; Building cooling; Building envelopes; Future meteorological year; Passive buildings; Passive design strategies; Residential building; Typical meteorological year; Climate change; building; climate change; consumption behavior; cooling; design; meteorology; residential energy; simulation; Taiwan
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science