Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Environmental Engineering / 環境工程學研究所
  4. Altered statistical learning and decision-making in methamphetamine dependence: Evidence from a two-armed bandit task
 
  • Details

Altered statistical learning and decision-making in methamphetamine dependence: Evidence from a two-armed bandit task

Journal
Frontiers in Psychology
Journal Volume
6
Journal Issue
DEC
Date Issued
2015
Author(s)
Harlé K.M
Zhang S
Schiff M
Mackey S
Paulus M.P
ANGELA YU-CHEN LIN  
DOI
10.3389/fpsyg.2015.01910
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84954214609&doi=10.3389%2ffpsyg.2015.01910&partnerID=40&md5=f268af5ea29379cc1c647754d041b2ad
https://scholars.lib.ntu.edu.tw/handle/123456789/625554
Abstract
Understanding how humans weigh long-term and short-term goals is important for both basic cognitive science and clinical neuroscience, as substance users need to balance the appeal of an immediate high vs. the long-term goal of sobriety. We use a computational model to identify learning and decision-making abnormalities in methamphetamine-dependent individuals (MDI, n = 16) vs. healthy control subjects (HCS, n = 16), in a two-armed bandit task. In this task, subjects repeatedly choose between two arms with fixed but unknown reward rates. Each choice not only yields potential immediate reward but also information useful for long-term reward accumulation, thus pitting exploration against exploitation. We formalize the task as comprising a learning component, the updating of estimated reward rates based on ongoing observations, and a decision-making component, the choice among options based on current beliefs and uncertainties about reward rates. We model the learning component as iterative Bayesian inference (the Dynamic Belief Model), and the decision component using five competing decision policies: Win-stay/Lose-shift (WSLS), e-Greedy, t-Switch, Softmax, Knowledge Gradient. HCS and MDI significantly differ in how they learn about reward rates and use them to make decisions. HCS learn from past observations but weigh recent data more, and their decision policy is best fit as Softmax. MDI are more likely to follow the simple learning-independent policy of WSLS, and among MDI best fit by Softmax, they have more pessimistic prior beliefs about reward rates and are less likely to choose the option estimated to be most rewarding. Neurally, MDI's tendency to avoid the most rewarding option is associated with a lower gray matter volume of the thalamic dorsal lateral nucleus. More broadly, our work illustrates the ability of our computational framework to help reveal subtle learning and decision-making abnormalities in substance use. © 2015 Harlé, Zhang, Schiff, Mackey, Paulus and Yu.
Subjects
Addiction; Bayesian model; Decision-making; Methamphetamine stimulant; Multi-armed bandit task; Reward processing
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science