Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. National Taiwan University Hospital / 醫學院附設醫院 (臺大醫院)
  4. Using DeepLab v3 + -based semantic segmentation to evaluate platelet activation
 
  • Details

Using DeepLab v3 + -based semantic segmentation to evaluate platelet activation

Journal
Medical & biological engineering & computing
Journal Volume
60
Journal Issue
6
Pages
1775
Date Issued
2022-06
Author(s)
Kuo, Tsung-Chen
Cheng, Ting-Wei
CHING-KAI LIN  
Chang, Ming-Che
Cheng, Kuang-Yao
Cheng, Yun-Chien
DOI
10.1007/s11517-022-02575-3
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/626695
URL
https://api.elsevier.com/content/abstract/scopus_id/85129043443
Abstract
This research used DeepLab v3 + -based semantic segmentation to automatically evaluate the platelet activation process and count the number of platelets from scanning electron microscopy (SEM) images. Current activated platelet recognition and counting methods include (a) using optical microscopy or SEM images to identify and manually count platelets at different stages, or (b) using flow cytometry to automatically recognize and count platelets. However, the former is time- and labor-consuming, while the latter cannot be employed due to the complicated morphology of platelet transformation during activation. Additionally, because of how complicated the transformation of platelets is, current blood-cell image analysis methods, such as logistic regression or convolution neural networks, cannot precisely recognize transformed platelets. Therefore, this study used DeepLab v3 + , a powerful learning model for semantic segmentation of image analysis, to automatically recognize and count platelets at different activation stages from SEM images. Deformable convolution, a pretrained model, and deep supervision were added to obtain additional platelet transformation features and higher accuracy. The number of activated platelets was predicted by dividing the segmentation predicted platelet area by the average platelet area. The results showed that the model counted the activated platelets at different stages from the SEM images, achieving an error rate within 20%. The error rate was approximately 10% for stages 2 and 4. The proposed approach can thus save labor and time for evaluating platelet activation and facilitate related research.
Subjects
Activation process; Automatic counting; Deep learning; Platelet; Semantic segmentation
Publisher
SPRINGER HEIDELBERG
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science