Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Materials Science and Engineering / 材料科學與工程學系
  4. Ultrahigh field-induced strain in lead-free ceramics
 
  • Details

Ultrahigh field-induced strain in lead-free ceramics

Journal
Nano Energy
Journal Volume
76
Date Issued
2020
Author(s)
Wu J.; Zhang H.; Huang C.-H.; Tseng C.-W.; Meng N.; Koval V.; Chou Y.-C.; Zhang Z.; Yan H.
YI-CHIA CHOU  
DOI
10.1016/j.nanoen.2020.105037
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086828075&doi=10.1016%2fj.nanoen.2020.105037&partnerID=40&md5=07081f5af9b5bea7761225c4d287ecf7
https://scholars.lib.ntu.edu.tw/handle/123456789/614656
Abstract
Due to the worldwide concerns of environmental protection and sustainable development, lead-free piezoelectric materials are greatly desired for bridging the electrical energy to the mechanical energy. However, their lower energy conversion coefficient compared to the conventional lead-containing piezoelectric materials significantly limits their device applications. Herein, we introduce a novel strategy to increase the strain of lead-free ferroelectric system via material structure design to create polar nano regions (PNRs) and point defects in the material while retaining the global ferroelectric phase. This added short-range structural heterogeneity in the material will facilitate the field-induced phase transition and reversible domain wall switching to enhance the strain. Following this strategy, we demonstrate an ultrahigh strain induced by an electric field in non-textured lead-free Bi0.5Na0.5TiO3 (BNT)-based ceramics. The strain in unipolar mode (Suni) can reach up to 0.74% at 70 kV/cm, making it the highest value in reported lead-free ceramics so far. This puts forward a good route to design high-performance piezoelectric materials by material structure engineering. It also reveals the promising potential of lead-free piezoelectric materials in practical electromechanical device applications. © 2020 The Authors
Subjects
Bismuth compounds; Domain walls; Energy conversion; Environmental protection; Ferroelectricity; Piezoelectric materials; Piezoelectricity; Point defects; Sodium compounds; Sustainable development; Textures; Titanium compounds; Conversion coefficients; Device application; Ferroelectric phase; Field-induced phase transition; Lead-free ferroelectrics; Lead-free piezoelectric materials; Mechanical energies; Structural heterogeneity; Electromechanical devices
Publisher
Elsevier Ltd
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science