Integral Extensions by a PI-ring and Jacobson Rings
Date Issued
2005
Date
2005
Author(s)
Tsai, Wan-Yu
DOI
zh-TW
Abstract
Abstract
In this paper the main theorems are as follows:
(i) Assume S = RCS(R), S is a module- nite extension of R if and
only if CS(R) is a PI-ring and the ring extension S=R is ring- nite and
integral.
(ii) Let S R be prime rings and S is a ring- nite centralizing
extension of R by a PI-ring. Then S is a G-ring if and only if R is a
G-ring and S is algebraic over R.
(iii) If the ring R is a ~J-ring, then any ring- nite centralizing extension
S of R by a PI-ring is also a ~J-ring.
Subjects
整擴張
有限生成環擴張
G-環
G-理想
Integral Extensions
Ring-finite Extensions
G-rings
G-ideals
Type
thesis
File(s)![Thumbnail Image]()
Loading...
Name
ntu-94-R92221002-1.pdf
Size
23.53 KB
Format
Adobe PDF
Checksum
(MD5):a5ce4f07a5c7f00f36215296acf5b97b
